首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
导电水凝胶由于具备良好的电学特性、可调节的机械性能、易于加工性和生物相容性等,是制备柔性电子设备的理想基材。本文使用马来酸与丙烯酰胺作为共聚单体,氯化锂作为导电离子,N,N'-二甲基双丙烯酰胺作为交联剂,使用光引发剂,采用原位光聚合的方式制备了一种导电水凝胶。制得的水凝胶可见光透过率高达93%,最大拉伸形变~380%,导电率最大为12 S/m。鉴于其优异的综合性能,实验中使用导电水凝胶制备了电容传感器并应用于人体活动监测。结果表明,制备的导电水凝胶电容传感器对不同程度的手指弯曲形变和不同力度的手指触碰均表现出灵敏的响应行为,为未来可穿戴柔性电子产品的发展起到了一定的推动作用。  相似文献   

2.
A capacitive biosensor based on an interdigitated electrode (IDE) with nanoislands was developed for label-free detection of antigen-antibody interactions. To enable sensitive capacitive detection of protein adsorption, the nanoislands were fabricated between finger electrodes of the IDE. The effect of the nanoislands on the sensitive capacitive measurement was estimated using horseradish peroxidase (HRP) as a model protein. Additionally, a parylene-A film was coated on the IDE with nanoislands to improve the efficiency of protein immobilization. By using HRP and hepatitis B virus surface antigen (HBsAg) as model analytes, the effect of the parylene-A film on the capacitive detection of protein adsorption was demonstrated.  相似文献   

3.
Method of integrating capacitive currents is used for the first time to examine adsorption of sodium humate, cordanum, and verapamil on a mercury film electrode. Values of the limiting adsorption, adsorption equilibrium constants, and free energy of the adsorption process are obtained.  相似文献   

4.
电容去离子(CDI)技术是一种新型的海水淡化技术,因其具有环境友好、操作简单和能耗低等优势而受到广大研究者的关注。在CDI技术中,电吸附的性能与装置的构型有着密切的联系。本文综述了目前常见的几种CDI装置,包括膜电容去离子(MCDI)、流动电极电容去离子(FCDI)、杂化电极电容去离子(HCDI)、反式电极电容去离子(i-CDI)以及脱盐电池(DB),对这几种装置的发展历程和装置构型进行介绍,最后,对CDI的装置构型在未来的研究发展方向进行了展望,以期为CDI装置在电脱盐领域的研究和应用提供参考。  相似文献   

5.
余林颇  陈政 《电化学》2017,23(5):533
本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展. 导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能. 活性炭和碳黑等一类碳材料则可作为非法拉第储能的电极材料. 通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量. 此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求. 超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.  相似文献   

6.
A method to combine gated trapping and capacitive coupling into a single experiment is reported. This is achieved with a circuit that allows isolation of the electronic network that gates the trapping voltage from the circuit that enables capacitive coupling of the rf excitation signal to the trapping plates. When the capacitive coupling network is not isolated from the gated trapping network, the trapping voltage changes occur on a 100 µs or longer timescale, which is incompatible with efficient capture of ions formed by matrix-assisted laser desorption ionization. Isolation of the two networks allows the trapping voltage to be gated with less than a 10 µs risetime. The effectiveness of this approach is demonstrated by a set of experiments carried out with and without the benefit of the isolation of capacitive coupling from gated trapping.  相似文献   

7.
The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.  相似文献   

8.
Electrocatalytic and capacitive properties of pyrolyzed polyacrylonitrile (PAN) nanofibres synthesized by electrospinning are studied. It is shown that PAN pyrolysis at 900°C allows synthesizing of pyropolymers with the intrinsic catalytic activity in acidic media and high capacitive characteristics.  相似文献   

9.
《Electroanalysis》2006,18(24):2405-2412
A method based on the combined use of multivariate curve resolution by alternating least squares (MCR‐ALS) with phase sensitive alternating current polarography (ACP) is proposed to evaluate the phase angle where capacitive current is minimized in a much more accurate way than the visual inspection of ACP signals. The method allows, through the analysis of series of AC polarograms measured at different phase angles out the potential, to distinguish between faradaic and capacitive contributions. Then the angle at which the capacitive current is negligible can be shown and, in some cases, the influence of adsorption on measured currents minimized.  相似文献   

10.
The electrochemical impedance of an iron electrode often shows the capacitive and inductive loops on the complex plane. The capacitive loop originates from the time constant of the charge transfer resistance and the electric double layer capacitance. The inductive loop is explained by Faradaic processes involving the reaction intermediate. In some cases, these loops deviate from a true semicircle. In this paper, the origins and curve-fitting methods for the deviated loops of electrochemical impedance are discussed. The constant phase element (CPE) was used to present the deviation of the capacitive loop instead of electric double layer capacitance. The reaction rate constants, which are a function of the frequency, are proposed for the Faradaic impedance to present the deviated inductive loop.  相似文献   

11.
Novel hierarchical porous carbon membranes were fabricated through a simple carbonization procedure of well-defined blending polymer membrane precursors containing the source of carbon polyacrylonitrile (PAN) and an additive of polyvinylpyrrolidone (PVP), which was prepared using phase inversion method. The as-fabricated materials were further used as the active electrode materials for supercapacitors. The effects of PVP concentration in the casting solution on structure feature and electrochemical capacitive performance of the as-prepared carbon membranes were also studied in detail. As the electrode material for supercapacitor, a high specific capacitance of 278.0 F/g could be attained at a current of 5 mA/cm2 and about 92.90% capacity retention could be maintained after 2000 charge/discharge cycles in 2 mol/L KOH solution with a PVP concentration of 0.3 wt% in the casting solution. The facile hierarchical pore structure preparation method and the good electrochemical capacitive performance make the prepared carbon membrane particularly promising for use in supercapacitor.  相似文献   

12.
The association of capacitive charging of the double-layer and a faradic redox reaction is desirable on carbon fiber (CF) when oxygen functional groups or other heteroatoms are present on its surface enhancing its capacitive properties. In this work, a systematic study of carbon fiber produced at three different heat treatment temperatures (HTT) of 1000, 1500, and 2000 °C was performed upon two approaches: middle (chemical) and severe (electrochemical) oxidative treatments. Morphological, structural, and surface chemical changes were investigated by field emission gun-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical responses were analyzed by galvanostatic charge/discharge, electrochemical impedance spectroscopy, and cyclic voltammetry. Raman results showed that the electrochemical oxidation promoted structural variation on CF samples independently of their HTT. Concerning the specific capacitance, the results indicated that chemical treatment was more effective for CF1000 than those for CF1500 and CF2000. This behavior may be attributed to higher amount of oxygen on its surface as well as its lower structural ordering. Otherwise, for CF1000, the electrochemical treatment increased its resistivity. However, for CF1500 and CF2000, which present higher graphitization levels and less heteroatom contents, greater capacitance values were observed after their electrochemical oxidative treatment.  相似文献   

13.
应用化学共沉淀法制备掺钌氢氧化钴复合材料,X射线衍射(XRD)、扫描电子显微镜(SEM)显示非晶态RuO2颗粒分散在六方晶系Co(OH)2薄片的表面.循环伏安、恒流充放电测试表明,Co/Ru=8/1的复合材料在碱性电解液中具有优良的电容性能和较高的比容量.  相似文献   

14.
A new type of capacitive deionization (CDI) system, based on capacitive suspension electrodes (CSEs), was developed for the purpose of desalting brackish and seawater through the use of flowable carbon suspensions. CSEs derived from activated carbon and acetylene black demonstrated a specific capacitance of 92 F g 1 in a static mode in a 0.6 M NaCl solution. The novel system introduced here is a proof of concept that capacitive suspension electrodes can be envisioned to desalt water without the aid of ion exchange membranes (IEMs).  相似文献   

15.
The understanding of bidimensional materials dynamics and its electrolyte interface equilibrium, such as graphene oxide (GO), is critical for the development of a capacitive biosensing platform. The interfacial capacitance (Ci) of graphene-based materials may be tuned by experimental conditions such as pH optimization and cation size playing key roles at the enhancement of their capacitive properties allowing their application as novel capacitive biosensors. Here we reported a systematic study of Ci of multilayer GO films in different aqueous electrolytes employing electrochemical impedance spectroscopy for the application in a capacitive detection system. We demonstrated that the presence of ionizable oxygen-containing functional groups within multilayer GO film favors the interactions and the accumulation of cations in the structure of the electrodes enhancing the GO Ci in aqueous solutions, where at pH 7.0 (the best condition) the Ci was 340 μF mg−1 at −0.01 V vs Ag/AgCl. We also established that the hydrated cation radius affects the mobility and interaction with GO functional groups and it plays a critical role in the Ci, as demonstrated in the presence of different cations Na+=640 μF mg−1, Li+=575 μF mg−1 and TMA+=477 μF mg−1. As a proof-of-concept, the capacitive behaviour of GO was explored as biosensing platform for standard streptavidin-biotin systems. For this system, the Ci varied linearly with the log of the concentration of the targeting analyte in the range from 10 pg mL−1 to 100 ng mL−1, showing the promising applicability of capacitive GO based sensors for label-free biosensing.  相似文献   

16.
连续电荷传递反应的阻抗谱与电极反应机制的关系   总被引:1,自引:0,他引:1  
对于含有一个吸附中间物的不可逆连续电行传递反应,在较低的过电位下,电极过程的Faraday阻抗通常在复平面上显示一个低频感抗弧.在较高的过电位下,这个感抗弧将转化为容抗弧,这一转变预示着速控步骤的变化.相反,当反应速率一直被其中的一个步骤控制时,它的法拉第弛豫始终表现出容抗行为.  相似文献   

17.
A new method for investigation of the swelling of polymers on exposure to gas or vapour has been devised and tested. It uses an optical profilometer (based on the chromatic aberration of a lens system) which is integrated into a computer-controlled gas-dosing and mixing setup. Gas and/or vapour concentration-dependent measurements have been carried out for thick layers of the polymers commonly used in gravimetric and capacitive gas sensors: poly(acrylic acid) (PAA), poly(vinyl pyrrolidone) (PVP), poly(ether urethane) (PEUT), and polydimethylsiloxane (PDMS). The thickness of PAA, PVP, and PEUT films changed significantly on exposure to humidity. These data have been used to derive the sorption isotherms of the respective polymers, which were found to be Henry or Flory–Huggins isotherms. Comparison of the geometrical (swelling) responses with capacitive responses revealed a strong correlation. The correlation, which occurs because both types of response are proportional to the water content of the polymer, is also valid for polymers with nonlinear gas responses. Finally the geometrical and electrical characteristics of the capacitive samples were used to explain the dependence of the capacitive response of different polymers on the concentration of the target gas or vapour. In this way was deduced that PDMS, which does not swell on exposure to humidity, swells in the presence of 2,3-dimethylpentane, for which no profilometer evaluations are yet available.  相似文献   

18.
A capacitive biosensor for the detection of bacterial endotoxin has been developed. Endotoxin-neutralizing protein derived from American horseshoe crab was immobilized to a self-assembled thiol layer on a biosensor transducer (Au). Upon injection of a sample containing endotoxin, a decrease in the observed capacitive signal was registered. Endotoxin could be determined under optimum conditions with a detection limit of 1.0 × 10−13 M and linearity ranging from 1.0 × 10−13 to 1.0 × 10−10 M. Good agreement was achieved when applying endotoxin preparations purified from an Escherichia coli cultivation to the capacitive biosensor system, utilizing the conventional method for quantitative endotoxin determination, the Limulus amebocyte lysate test as a reference. The capacitive biosensor method was statistically tested with the Wilcoxon signed rank test, which proved the system is acceptable for the quantitative analysis of bacterial endotoxin (P < 0.05). Figure The flow-injection capacitive biosensor system and the capacitive properties of the transducer surface, where CSAM is the capacitance change of the self-assembled thiol monolayer, CP is the capacitance change of the protein layer, Ca is the capacitance change of the analyte layer and CTotal is the total capacitance change measured at the working electrode/solution interface (modified from Limbut et al., 2006. Biosens Bioelectron 22: 233-240)  相似文献   

19.
金玉红  王莉  尚玉明  高剑  李建军  何向明 《化学通报》2014,77(11):1045-1053
超级电容器具有功率密度高、充放电速度快、循环寿命长和维护成本低的特点,在电动车动力电池领域具有潜在的应用前景。超级电容器性能主要由其电极材料所决定。聚苯胺易合成、理论比容量高,而且导电性能优异,作为超级电容器电极材料有很高的应用价值。但是,在长期使用过程中,它的体积容易发生膨胀或收缩,循环寿命差。为了解决这个问题,将聚苯胺与石墨烯复合可以扬长避短,充分利用两者之间的协同效应,赋予复合材料优异电化学电容性能。本文综述了超级电容器用石墨烯-聚苯胺复合材料的制备方法,包括原位聚合法、油水界面合成法、电化学合成法、层层自组装法等;提出了三维网状石墨烯和对石墨烯-聚苯胺复合材料进行改性来提高复合材料的电化学电容性能的思路。  相似文献   

20.

A capacitive sensor based on S-{12-[1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl]dodecyl} ethanethioate (FT), a compound with a functional group exhibiting selective affinity towards Cr(VI) ions, was developed. FT was mixed with shorter-chain thiol-decanethiol (DT), to obtain an Au electrode surface well covered by a thiol monolayer. The composition and high quality of self-assembled monolayers (SAMs) were crucial factors influencing the performance of the capacitive sensor. In this work, SAMs formed from FT and DT mixtures with different compositions were studied. For physicochemical characterization of SAMs X-ray photoelectron spectroscopy (XPS), contact angle measurements as well as atomic force microscopy (AFM) were used. Cyclic voltammetry was employed to estimate an electrode surface coverage. Based on the obtained results, the composition of thiol layer providing the best parameters for capacitive sensing of chromium(VI) was chosen. Moreover, the analytical performance of sensor was verified.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号