首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semiconductor self-assembled quantum dots are potential candidates to develop a new class of midinfrared quantum photodetectors and focal plane arrays. In this article, we present the specific midinfrared properties of InAs/GaAs quantum dots associated with the intersublevel transitions. The electronic structure, which accounts for the strain field in the islands, is obtained within the framework of a three-dimensional 8 band k.p formalism. The midinfrared intersublevel absorption in n-doped quantum dots is described. We show that the carrier dynamics can be understood in terms of polarons which result from the strong coupling regime for the electron–phonon interaction in the dots. The principle of operation of vertical and lateral quantum dot infrared photodetectors is described and discussed by comparison with quantum well infrared photodetectors. We review the performances of different type of detectors developed to date and finally give some orientation to realize high performance quantum dot infrared photodetectors. To cite this article: P. Boucaud, S. Sauvage, C. R. Physique 4 (2003).  相似文献   

2.
The theoretical investigations of the interface optical phonons, electron–phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron–phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1−xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron–phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1−xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron–phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron–phonon coupling strengths appear linear changes.  相似文献   

3.
A microscopic theory of optical transitions in quantum dots with a carrier-phonon interaction is developed. Virtual transitions into higher confined states with acoustic phonon assistance add a quadratic phonon coupling to the standard linear one, thus extending the independent boson model. Summing infinitely many diagrams in the cumulant, a numerically exact solution for the interband polarization is found. Its full time dependence and the absorption line shape of the quantum dot are calculated. It is the quadratic interaction which gives rise to a temperature-dependent broadening of the zero-phonon line, calculated here for the first time in a consistent scheme.  相似文献   

4.
We report the study of infrared spectroscopy of intraband transitions in Ge/Si quantum dot superlattices. The superlattices, which were grown on (001) oriented Si substrates by a solid source molecular beam epitaxy system, are composed mainly of 20 or 30 periods of Ge dot layers and Si spacer films. The structural properties of them and of the uncapped Ge dots grown on the surfaces of some of them were tested by cross-sectional transmission electron and atomic force microscopes, respectively. It is found that the Ge quantum dots have flat lens-like shapes. Infrared absorption signals peaking in the mid-infrared range were observed using Fourier transform infrared and Raman scattering spectroscopy techniques. Experimental and theoretical analysis suggests that the mid-infrared response be attributed to intraband transitions within the valence band of the Ge quantum dots in the superlattices. The fact that the intraband absorption is strongly polarized along the growth axis of the superlattices signifies that the Ge quantum dots with flat lens-like shapes perform as Ge/Si-based quantum wells. This study demonstrates the application potential of these kinds of Ge/Si quantum dot superlattices for developing mid-infrared photodetectors.  相似文献   

5.
研究了抛物量子点中弱耦合束缚极化子的性质,采用改进的线性组合算符和幺正变换方法导出了束缚极化子的振动频率、有效质量和相互作用能。讨论了量子点的有效受限长度、电子LO声子耦合强度和库仑场对抛物量子点中弱耦合极化子的振动频率、有效质量和相互作用能的影响。数值计算结果表明:弱耦合束缚极化子的振动频率和相互作用能随有效受限长度的减少而急剧增大,振动频率随库仑势以及电子LO声子耦合强度的增加而增加,而相互作用能随库仑势以及电子LO声子耦合强度的增加而减小。有效质量仅与电子LO声子耦合强度有关。  相似文献   

6.
The exciton-longitudinal optical phonon interaction is theoretically investigated for the case of polar semiconductor cylindrical quantum dots embedded in semiconductor matrix. The theory is developed within the dielectric continuum model considering the Fröhlich interaction between electrons and confined bulk longitudinal optical phonons for a configurational interaction model of quantum dot. Representative longitudinal optical phonon mode for the exciton-phonon interaction is predicted for cylindrical InAs/GaAs quantum dots.  相似文献   

7.
Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet–triplet anticrossing point which appears due to the spin–orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin–orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.  相似文献   

8.
Surprisingly, several experiments have reported that normal-incidence light absorption due to inter-conduction-subband transitions in direct-gap semiconductor quantum wells is as strong as in-plane-incidence absorption. In contrast to other models, a recent theoretical study claimed that a 14-bandk  pmodel including multiband coupling terms due toremote-conduction bandsis able to explain the experimental results. In this work, a concise formulation extends the model beyond 14 bands. Nevertheless, after rederiving the optical transition matrix elements, this analysis clearly shows that the oscillator strength for the in-plane polarized optical intersubband transition due to the multiband coupling effects is much smaller than the oscillator strength for the normal-to-plane polarized optical intersubband transition. These results indicate that the multiband coupling effects due to remote-conduction bands cannot cause a sufficient in-plane polarized optical intersubband transition to produce the observed normal-incidence absorption in the desirablen-type III–V compound semiconductor quantum wells.  相似文献   

9.
库仑场对抛物量子点中强耦合极化子性质的影响   总被引:3,自引:3,他引:0       下载免费PDF全文
陈英杰  肖景林 《发光学报》2006,27(5):665-669
采用线性组合算符和幺正变换方法研究了在库仑场束缚下抛物量子点中强耦合束缚极化子的振动频率和基态能量。并对其进行了数值计算,结果表明:强耦合束缚极化子的振动频率和基态能量随量子点的有效受限长度的增加而减小,随电子-LO声子耦合强度的增加而增加,束缚极化子的基态能量随库仑势的增加而减小。  相似文献   

10.
《Physics letters. A》2014,378(32-33):2443-2448
The interface optical phonons and its ternary effects in onion-like quantum dots are studied by using dielectric continuum model and the modified random-element isodisplacement model. The dispersion relations, the electron–phonon interactions and ternary effects on the interface optical phonons are calculated in the GaN/AlxGa1  xN onion-like quantum dots. The results show that aluminium concentration has important influence on the interface optical phonons and electron–phonon interactions in GaN/AlxGa1  xN onion-like quantum dots. The frequencies of interface optical phonons and electron–phonon coupling strengths change linearly with increase of aluminium concentration in high frequency range, and do not change linearly with increasing aluminium concentration in low frequency range.  相似文献   

11.
柱型量子点中极化子的重整化质量   总被引:2,自引:2,他引:0  
应用线性组合算符方法和幺正变换方法,研究在量子阱和抛物势作用下的柱型量子点中极化子的重整化质量.结果表明,量子点中极化子的重整化质量随量子点高度的增加而减小;随耦合强度的增加而增加,这是由于电子与晶格振动之间的相互作用增强所致.而基态能量与量子点的尺度、特征频率、耦合强度、磁场等均有关,当极化子运动速度不变时,基态能量随量子点柱高的增加而减小;随特征频率和磁场强度的增加而增加.  相似文献   

12.
The coupling effects on the optical absorption spectrum of semiconductor quantum dots arestudied by using the standard model with valence and conduction band levels coupled todispersive quantum phonons of infinite modes. By deducing the analytical expression of theoptical absorption coefficient, the relationship between the measurable quantities and theintrinsic properties of the semiconductor quantum dot is established. By this expression,the peak position, the line shape, the linewidth, and the energy shift of the absorptionspectrum of semiconductor quantum dot can be calculated precisely for a wide range ofparameters. The role of coupling strength as a mechanism of absorption line asymmetry isinvestigated, and the calculation results clearly show the coupling-induced asymmetry inthe absorption line. This analytical approach is applied to GaAs quantum dot, and theresults are consistent with those of experiment observations.  相似文献   

13.
We study theoretically the time development of electronic relaxation in quantum dots. We consider the process of relaxation of the state with an electron prepared at the beginning of relaxation in the electronic ground state. We obtain a fast (in picoseconds) increase of electronic population in the excited state. Also, we consider the process of relaxation of an electron from an excited state in the dot. Here we obtain an incomplete depopulation of the electron from the excited state. We compare these results to experiments in which a fast decrease of luminescence is reported during the first period of relaxation after resonant excitation of the ground state. We estimate numerically the role of electron–LO–phonon (Fröhlich's coupling) mechanism in these processes. We show that this effect may be attributed to the influence of multiple scattering of quantum dot electrons on LO phonons. A single-electron two-energy-level quantum dot model is used to demonstrate this effect in an isolated semiconductor quantum dot.  相似文献   

14.
We study the effect of quantum dot size on the mid-infrared photocurrent, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage during molecular beam epitaxy of Ge/Si(001) system in the Stranski–Krastanov growth mode while keeping the deposition temperature to be the same. A device with smaller dots is found to exhibit a lower capture probability and a higher photoconductive gain and photoresponse. The integrated responsivity in the mid-wave atmospheric window (λ = (3–5) μm) is improved by a factor of about 8 when the average in-plane dot dimension changes from 18 to 11 nm. The decrease in the dot size is expected to reduce the carrier relaxation rate due to phonon bottleneck by providing strong zero-dimensional quantum mechanical confinement.  相似文献   

15.
The article discusses some of the recent results on semiconductor quantum dots with magnetic impurities. A single Mn impurity incorporated in a quantum dot strongly changes the optical response of a quantum-dot system. A character of Mn-carrier interaction is very different for II-VI and III-V quantum dots (QDs). In the II-VI QDs, a Mn impurity influences mostly the spin-structure of an exciton. In the III-V dots, a spatial localization of hole by a Mn impurity can be very important, and ultimately yields a totally different spin structure. A Mn-doped QD with a variable number of mobile carriers represents an artificial magnetic atom. Due to the Mn-carrier interaction, the order of filling of electronic shells in the magnetic QDs can be very different to the case of the real atoms. The “periodic” table of the artificial magnetic atoms can be realized in voltage-tunable transistor structures. For the electron numbers corresponding to the regime of Hund's rule, the magnetic Mn-carrier coupling is especially strong and the magnetic-polaron states are very robust. Magnetic QD molecules are also very different to the real molecules. QD molecules can demonstrate spontaneous breaking of symmetry and phase transitions. Single QDs and QD molecules can be viewed as voltage-tunable nanoscale memory cells where information is stored in the form of robust magnetic-polaron states. To cite this article: A.O. Govorov, C. R. Physique 9 (2008).  相似文献   

16.
We show that we can measure the room temperature ultraweak absorption of a single buried semiconductor quantum dot. This is achieved by monitoring the deformation field induced by the absorption of midinfrared laser pulses and locally detected with an atomic force microscope tip. The absorption is spectrally and spatially resolved around lambda approximately 10 microm wavelength with 60 nm lateral resolution (lambda/150). The electronic S-D intersublevel absorption of a single quantum dot is identified around 120 meV and exhibits a homogeneous linewidth of approximately 10 meV at room temperature.  相似文献   

17.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1−xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

18.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1?xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

19.
ABSTRACT

Using the two-dimensional (2D) diagonalisation method, the impurity-related electronic states and optical response in a 2D quantum dot with Gaussian confinement potential under nonresonant intense laser field are investigated. The effects of a hydrogenic impurity on the energy spectrum and binding energy of the electron and also intersubband optical absorption are calculated. The obtained numerical results show that the degeneracies of the excited electron states are broken and the absorption spectrum exhibits a redshift with the values of the laser field. The findings indicate a new degree of freedom to tune the performance of novel optoelectronic devices, based on the quantum dots and to control their specific properties by means of intense laser field and hydrogenic donor impurity. Using the same Gaussian confinement model, the electronic properties of a confined electron in the region of a spherical quantum dot are studied under the combined effects of on-centre donor impurity and a linearly polarised intense laser radiation. The three-dimensional problem is used to theoretically model, with very good agreement, some experimental findings reported in the literature related to the photoluminescence peak energy transition.  相似文献   

20.
We discuss the decoherence dynamics in a single semiconductor quantum dot and analyze two dephasing mechanisms. In the first part of the review, we examine the intrinsic source of dephasing provided by the coupling to acoustic phonons. We show that the non-perturbative reaction of the lattice to the interband optical transition results in a composite optical spectrum with a central zero-phonon line and lateral side-bands. In fact, these acoustic phonon side-bands completely dominate the quantum dot optical response at room temperature. In the second part of the article, we focus on the extrinsic dephasing mechanism of spectral diffusion that determines the quantum dot decoherence at low temperatures. We interpret the variations of both width and shape of the zero-phonon line as due to the fluctuating electrostatic environment. In particular, we demonstrate the existence of a motional narrowing regime in the limit of low incident power or low temperature, thus revealing an unconventional phenomenology compared to nuclear magnetic resonance. To cite this article: G. Cassabois, R. Ferreira, C. R. Physique 9 (2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号