首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
《Comptes Rendus Physique》2003,4(9):993-1008
Mechanical properties of carbon nanotubes are discussed based on recent advances in both modeling and experiment. To cite this article: R.S. Ruoff et al., C. R. Physique 4 (2003).  相似文献   

3.
This paper reviews transmission electron microscopy studies, combining high resolution imaging and electron energy loss spectroscopy, of the nucleation and growth of carbon single wall nanotubes with a particular emphasis on the nanotubes obtained from the evaporation-based elaboration techniques. Inspection of samples obtained from different synthesis routes shows that in all cases nanotubes are found to emerge from catalyst particles and that they have grown perpendicular or parallel to the surface according to whether they have been synthesized via evaporation-based methods or CCVD methods. Whereas the latter case corresponds to the well-known situation of carbon filaments growth, the former case strongly suggests another formation and growth process, which is described and its different steps discussed in detail. In this model, formation of the nanotubes proceeds via solvation of carbon into liquid metal droplets, followed by precipitation, at the surface of the particles, of excess carbon in the form of nanotubes through a nucleation and root growth process. It is argued that the nucleation of the nanotubes, which compete with the formation of graphene sheets wrapping the surface of the particle, necessarily results from a surface instability induced by the conditions of segregation. The nature and the origin of this instability was studied in the case of the class of catalyst Ni–R.E. (R.E.=Y, La, Ce, …) in order to identify the influence of the nature of the catalyst. The respective roles played by Ni and R.E. have been identified. It is shown that carbon and rear-earth co-segregate and self-assemble at the surface of the particle in order to form a surface layer destabilizing the formation of graphene sheets and providing nucleation sites for nanotubes growing perpendicular to the surface. To cite this article: A. Loiseau et al., C. R. Physique 4 (2003).  相似文献   

4.
Multiwall carbon nanotubes exhibit oscillations of magnetoresistance with the period Φ0=hc/2e [A. Bachtold, C. Strunk, J.-P. Salvetat, et al., Nature 397, 673 (1999)]. This effect is analogous to the Sharvin effect for a normal metal [D. Yu. Sharvin and Yu. V. Sharvin, Pis’ma Zh. Éksp. Teor. Fiz. 34, 285 (1981)]. It is shown that, along with the magnetoresistance peaks corresponding to the flux values that are multiples of Φ 0, additional peaks with a period three times shorter can be observed in carbon nanotubes.  相似文献   

5.
Superconducting properties of carbon nanotubes   总被引:1,自引:0,他引:1  
Metallic single wall carbon nanotubes have attracted much interest as 1D quantum wires combining a low carrier density and a high mobility. It was believed for a long time that low temperature transport was exclusively dominated by the existence of unscreened Coulomb interactions leading to an insulating behavior at low temperature. However experiments have also shown evidence of superconductivity in carbon nanotubes. We distinguish two fundamentally different physical situations. When carbon nanotubes are connected to superconducting electrodes, they exhibit proximity induced superconductivity with supercurrents which strongly depend on the transmission of the electrodes. On the other hand intrinsic superconductivity was also observed in suspended ropes of carbon nanotubes and recently in doped individual tubes. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsion at low temperature, and enables investigation of superconductivity in a 1D limit never explored before. To cite this article: M. Ferrier et al., C. R. Physique 10 (2009).  相似文献   

6.
《Comptes Rendus Physique》2003,4(9):1063-1074
The comparative crystallisation and HRTEM imaging properties of simple binary halides formed by the alkali iodides MI (M = Li, K, Na, Rb and Cs) within single walled carbon nanotubes (SWNTs) are described. The most common structure type observed within SWNTs is the rocksalt archetype, although CsI was observed to form both bcc and rocksalt structure types. In SWNTs forming in the 1.2–1.6 nm diameter range, all of the incorporated halides showed preferred orientation, with the 〈100〉 growth direction predominating for rocksalt-type packing and 〈112〉 so far observed exclusively for bcc packing. Crystals with dimensions spanning 2–6 atomic layers thickness in projection invariably exhibited lattice expansions that were attributed predominantly to a net reduction in coordination at the crystal-carbon interface. The crystallisation behaviour of UCl4–KCl and AgI–AgCl eutectic melts was compared in carbon nanotubes of different diameters and a pronounced ordering influence over the normally glassy melts was observed in narrower capillaries. HgI2 crystallised within nanotubes with ultra-narrow (i.e., 0.8 nm) capillaries were observed to form helical 2 ×1 layer crystals. To cite this article: J. Sloan et al., C. R. Physique 4 (2003).  相似文献   

7.
In this paper, carbon nanotubes were synthesized on carbon microfibers by floating catalyst method with the pretreatment of carbon microfibers at the temperature of 1023 K, using C2H2 as carbon source and N2 as carrier gas. The morphology and microstructure of carbon nanotubes were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The composition of carbon nanotubes was determined by energy dispersive X-ray spectroscopy (EDX). The results showed that the surface of treated carbon microfibers was thickly covered by carbon nanotubes with diameters of about 50 nm. EDX image indicated that the composition of carbon nanotubes was carbon. In comparison with the sample grown on untreated carbon microfibers surface, it was found that after carbon microfibers were boiled in the solution of sulfur acid and nitric acid (VH2SO4:VHNO3 = 1:3) and immersed in the solution of iron nitrate and xylene, carbon nanotubes with uniform density can be grown on carbon microfibers surface. Based on the results, we concluded that the pretreatment of carbon microfibers had great effect on the growth of carbon nanotubes by floating catalyst method.  相似文献   

8.
Nitrogen-containing carbon nanotubes are synthesized using a gas-phase reaction. The synthesis of nitrogen-doped carbon nanotubes from 100 to 500 Å in diameter is accomplished through pyrolysis of acetonitrile (CH3CN) at a temperature of 800°C. Cobalt and nickel metallic particles formed upon thermal decomposition of a mixture of maleate salts are used as catalysts. The materials synthesized are investigated by scanning and transmission electron microscopy. Analysis of the x-ray photoelectron spectra demonstrates that the content of nitrogen atoms in three nonequivalent charge states is approximately equal to 3%. A comparison of the CK α x-ray fluorescence spectrum of the carbon nanotubes synthesized through electric-arc evaporation of graphite and the x-ray fluorescence spectrum of the nitrogen-containing carbon nanotubes prepared by catalytic decomposition of acetonitrile indicates that, in the latter case, the spectrum contains a certain contribution from the sp 3 states of carbon atoms. The temperature dependences of the electrical conductivity for different types of multi-walled carbon nanotubes are compared. The difference observed in the temperature dependences of the electrical conductivity is associated with the presence of additional scattering centers in nitrogen-containing carbon nanotubes.  相似文献   

9.
The structure of a new non-carbon (beryllium oxide BeO) nanotube consisting of a rolled-up graphene sheet is proposed, and its physical properties are described. Ab initio calculations of the binding energy, the electronic band structure, the density of states, the dependence of the strain energy of the nanotube on the nanotube diameter D, and the Young’s modulus Y for BeO nanotubes of different diameters are performed in the framework of the density functional theory (DFT). From a comparison of the binding energies calculated for BeO nanotubes and crystalline BeO with a wurtzite structure, it is inferred that BeO nanotubes can be synthesized by a plasma-chemical reaction or through chemical vapor deposition. It is established that BeO nanotubes are polar dielectrics with a band gap of ~5.0 eV and a stiffness comparable to that of the carbon nanotubes (the Young’s modulus of the BeO nanotubes Y BeO is approximately equal to 0.7Y C, where Y C is the Young’s modulus of the carbon nanotubes). It is shown that, for a nanotube diameter D > 1 nm, the (n, n) armchair nanotubes are energetically more favorable than the (n, 0) zigzag nanotubes.  相似文献   

10.
Nitrogen-doped Y-junction bamboo-shaped carbon nanotubes were synthesized by chemical vapor deposition of monoethanolamine/ferrocene mixture on GaAs substrate at 950 °C. The use of monoethanolamine as the C/N feedstock simplifies the experimental arrangement by producing ammonia during the growth process. The structure, morphology and graphitization of as-grown nitrogen-doped carbon nanotubes (CNx) were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy analysis. TEM analysis indicates that nanotubes have a bamboo-like structure. The nitrogen concentration on as-grown CNx nanotube was found to be 7.8 at.% by X-ray photoelectron spectroscopy (XPS) analysis. XPS analysis also indicated that there are two different types of nitrogen atoms (pyridinic and graphitic) in these materials. The possible growth mechanism of formation of Y-junction CNx nanotubes was briefly discussed. Field emission measurement suggested that as-grown CNx nanotubes are excellent emitters with turn-on and threshold fields of 1.6 and 2.63 V/μm, respectively. The result indicated that monoethanolamine proves to be an advantageous precursor to synthesize Y-junction nitrogen-doped carbon nanotubes and such nanotubes might be an effective material to fabricate various field emission devices.  相似文献   

11.
Time-dependent fields are a valuable tool to control fundamental quantum phenomena in highly coherent low dimensional electron systems. Carbon nanotubes and graphene are a promising ground for these studies. Here we offer a brief overview of driven electronic transport in carbon-based materials with the main focus on carbon nanotubes. Recent results predicting control of the current and noise in nanotube based Fabry–Pérot devices are highlighted. To cite this article: L.E.F. Foa Torres, G. Cuniberti, C. R. Physique 10 (2009).  相似文献   

12.
Molecular dynamic calculations are carried out for the (P, T) phase diagram of a covalent compound of cross-linked carbon single-wall nanotubes (SWNT) and for the structures and electronic spectra of the novel crystals of polymerized carbon nanotubes. It is shown that the transformation of covalently bonded nanotubes in a close-packed conducting structure cardinally modifies their electronic properties. The P-SWNT crystal becomes semiconducting and, upon complete transformation of sp 2-hybridized carbon atoms into sp 3-hybridized ones, it becomes an insulator.  相似文献   

13.
An attempt is made to calculate the energy bands and spectra of the characteristic CK α emission of small-diameter carbon nanotubes. The calculated spectra for the nanotubes are compared with similar spectra for graphite monolayers used as a test object and with known experimental results for nanotubes. It is concluded that the x-ray emission spectra can be used to identify thin carbon nanotubes. A classification of solid-phase carbon is proposed which takes into account the position of carbon nanotubes in the family of allotropic carbon forms. The type of hybridization of the electrons in the carbon atom is used as the criterion for classification.  相似文献   

14.
Carbon nanotubes (CNT) appear as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of a carbon nanotube field effect transistor (CNTFET). In this work, we present results of a Monte Carlo simulation of a coaxially gated CNTFET, including electron–phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of the electron mean-free-path. To highlight the potential of the high performance level of CNTFET, we then perform a study of the DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of a Si nanowire MOSFET. To cite this article: H. Cazin d'Honincthun et al., C. R. Physique 9 (2008).  相似文献   

15.
Superconductivity in the single-walled carbon nanotubes is investigated. First, effect of diameter increasing on the clean systems critical temperature, Tc, is calculated. Then effect of impurity doping on the reduction of critical temperature Tc, of single-walled carbon nanotubes, is discussed. Our calculations illustrate that metallic zigzag single-walled carbon nanotubes have higher Tc than armchair single-walled carbon nanotubes with approximately same diameters and Tc decreases by increasing diameter. This can explain why superconductivity could be found in the small diameter single-walled carbon nanotubes. We found for the impurity doped systems, impurity in the strong scattering regime can decrease Tc significantly while in the weak scattering regime Tc is not affected by impurity doping.  相似文献   

16.
Carbon nanotubes and semiconductor nanowires have been thoroughly studied for the future replacement of silicon-based complementary metal oxide semiconductor (CMOS) devices and circuits. However, the organisation of these nanomaterials in dense transistor arrays, where each device is capable of delivering drive currents comparable with those of their silicon counterparts is still a big challenge. Here, we present a novel approach to the organisation of carbon nanotubes and semiconductor nanowires, based on the use of porous lateral alumina templates obtained by the controlled anodic oxidation of aluminium thin films. We discuss the growth of nanomaterials inside the pores of such templates and show the feasibility of our approach. Our first results point to further work on controlling the synthesis of catalyst nanoparticles at the bottom of the pores, these particles being necessary to nucleate and sustain the growth of carbon nanotubes or semiconductor nanowires. To cite this article: D. Pribat et al., C. R. Physique 10 (2009).  相似文献   

17.
The C 1s and F 1s x-ray absorption spectra of fluorinated multiwalled carbon nanotubes with different fluorine contents and reference compounds (highly oriented pyrolytic graphite crystals and “white” graphite fluoride) were measured using the equipment of the Russian-German beamline at the BESSY II storage ring with a high energy resolution. The spectra obtained were analyzed with the aim of characterizing multiwalled carbon nanotubes and their products formed upon treatment of the nanotubes with fluorine at a temperature of 420°C. It was established that, within the probing depth (~15 nm) of carbon nanotubes, the process of fluorination occurs uniformly and does not depend on the fluorine concentration. The interaction of fluorine atoms with multiwalled carbon nanotubes in this case proceeds through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton and is accompanied by a change in the hybridization of the 2s and 2p valence electron states of the carbon atom from the trigonal (sp 2) to tetrahedral (sp 3) hybridization.  相似文献   

18.
The structural and electronic properties of the armchair Cx(BN)y nanotubes are studied using the density functional theory with a generalized gradient approximation. The results show that the properties of the Cx(BN)y nanotubes are intermediate between those of carbon nanotubes and BN nanotubes, and also adjustable by their radius, ratio of carbon component, and configurations.  相似文献   

19.
In order to improve pinning properties of bulk Bi2Sr2CaCu2O8+δ (Bi-2212) materials, samples of both pure Bi-2212 and Bi-2212 with carbon nanotubes embedded (CNTE Bi-2212) have been prepared by partial-melting processing. The preparation conditions are chosen so that a significant fraction of carbon nanotubes can be successfully embedded in the material, as indicated by thermogravimetric analysis. The microstructure and composition of non-superconducting second phases are found to be different in these two types of samples. By means of magneto-optical (MO) imaging, flux distributions in both types of samples are investigated up to T=77 K. The MO investigation reveals the propagation of a flux front in both pure and CNTE Bi-2212, showing that there is a strong coupling between grains (clusters) which enables the flow of inter-granular currents. This grain coupling persists in our field range of ±180 mT. In bulk non-textured ceramic high-Tc superconductors, the flux fronts caused by currents flowing through the entire sample are observed for the first time. Intra-granular current densities are obtained from the images as a function of grain size. The MO investigations have revealed the differences in the current densities caused by the presence of carbon nanotubes, showing that the carbon nanotubes are indeed functioning like columnar defects produced by heavy-ion irradiation. The increase of the flux penetration field is also a manifestation of the increase of the transport current density in the CNTE Bi-2212. The superconducting properties in our samples are very well reproducible.  相似文献   

20.
Results of a comprehensive study of the interface interaction of a nanostructured CuOx and multiwalled carbon nanotubes (MWCNTs) in CuOx/MWCNT nanocomposite by X-ray absorption spectroscopy (XANES, NEXAFS) and X-ray photoelectron spectroscopy (XPS) methods using a synchrotron radiation are presented. It is established that a nanostructured CuOx in CuOx/MWCNT nanocomposite is predominantly formed by CuO and has the form of flakelike particles 200–500 nm in size uniformly dispersed over an array of nanotubes. A chemical interaction of CuOx and nanotubes with formation of covalent carbon–oxygen bonds, which does not lead to a significant destruction of the outer layers of carbon nanotubes, is observed at the interfaces of the nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号