首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
This paper proposes a solution to the excessive area penalty associated with traditional buffer direct injection (BDI) for single pixel. The proposed solution reduces the area and power consumption of BDI to combine the direct injection (DI) within a shared architecture, while a dual-mode readout circuit expands the functionality and performance of the array readout circuit of infrared sensor. An experimental array of 10 × 8 readout circuits was fabricated using TSMC 2P4M 0.35 μm 5 V technology. Measurements were obtained using a main clock with a frequency of 3 MHz and power consumption of 9.94 mW. The minimum input current was 119 pA in BDI and 1.85 pA in DI. The signal swing was 2 V, the root mean square noise voltage was 1.84 mV, and the signal-to-noise ratio was 60 dB. This approach is applicable to mid- and long-band sensors to increase injection efficiency and resolution.  相似文献   

2.
Although the discomfort or injury associated with whole-body vibration cannot be predicted directly from the power absorbed during exposure to vibration, the absorbed power may contribute to understanding of the biodynamics involved in such responses. From measurements of force and acceleration at the seat, the feet, and the backrest, the power absorbed at these three locations was calculated for subjects sitting in four postures (feet hanging, maximum thigh contact, average thigh contact, and minimum thigh contact) both with and without a rigid vertical backrest while exposed to four magnitudes (0.125, 0.25, 0.625, and 1.25 m s?2 rms) of random fore-and-aft vibration. The power absorbed by the body at the supporting seat surface when there was no backrest showed a peak around 1 Hz and another peak between 3 and 4 Hz. Supporting the back with the backrest decreased the power absorbed at the seat at low frequencies but increased the power absorbed at high frequencies. Foot support influenced both the magnitude and the frequency of the peaks in the absorbed power spectra as well as the total absorbed power. The measurements of absorbed power are consistent with backrests being beneficial during exposure to low frequency fore-and-aft vibration but detrimental with high frequency fore-and-aft vibration.  相似文献   

3.
《Current Applied Physics》2010,10(6):1427-1435
The paper presents a new body RF coil design scheme for a low-field open MRI system. The RF coil is composed of four rectangular loops which are made of wide copper strips located near the surfaces of the bottom and top pole faces of the permanent magnet. The body RF coil has been designed by using the pseudo electric dipole radiation (PEDPR) method with the Metropolis algorithm. In the calculation of the RF fields via the finite difference time domain (FDTD) method, the computational time increases as the RF frequency becomes lower. Moreover, the computational process using the FDTD method takes a very long time when the RF coil is optimized. The optimization requires varying the configuration of the RF coil system and performing successive calculations of field strength and field homogeneity. When we perform these successive calculations, the computational time can be reduced by using the PEDPR method, where the segmented current elements of the RF coil are treated as pseudo electric dipole radiation sources. Because the RF coil is made of wide strips, the variation of the current density on the strip has been considered in the B1-field calculation. For each configuration of the RF coil system, the current distribution is calculated via circuit analysis, where each copper strip is considered as a parallel combination of current element lines. The preliminary field calculation study by the FDTD method verifies both the circuit analysis method for the current distribution and the PEDPR method for the radiation field strength. The optimization of the RF coil configuration is performed by the Simulated Annealing (SA) process using the Metropolis algorithm. Simulations have been performed for a 10 MHz RF frequency. The optimized RF coil has four rectangular loops of 37 cm × 100 cm with 6.5 cm wide strips which are separated vertically 49 cm and horizontally center-to-center 63 cm. In the 25 cm diameter of spherical volume (DSV), the design results show a good field inhomogeneity of the B1-field below 0.49 dB (5.8%).  相似文献   

4.
This paper proposes a new bandgap reference (BGR) circuit which adopts a cascode current mirror biasing for reducing the reference voltage variation and a novel sizing method for reducing the PNP BJT area. The proposed BGR was designed and fabricated using 0.18 μm triple-well CMOS process which provides only normal VTH transistors.The reference voltage variation of BGR was reduced from 0.5 mV (conventional) to 0.09 mV (proposed) using cascode current mirror biasing method. And the ratio of BJT emitter areas was reduced by a factor of 20 through the novel sizing method.  相似文献   

5.
The paper proposes a readout circuit architecture with adjustable integration time for dual-band infrared detectors. The readout circuit uses direct injection to be combined with a capacitive trans-impedance amplifier. The amplifier is sharing between two pixels to reduce the complexity of the readout circuit. The proposed device reduces power consumption and area overhead compared to traditional structures. An experimental chip was fabricated using the TSMC 0.35 μm 2P4 M 5 V process. The resulting unit pixel layout area is 40 μm × 40 μm with input photocurrent ranging from 0.11 pA to 50 nA. CTIA mode is applicable from 0.11 pA to 10 nA, while DI mode is applicable from 3.3 pA to 50 nA. The maximum operating frequency of the chip are 4 MHz. The CTIA output swing is 1.2 V, the DI output swing is 2 V. The signal to noise ratio of the readout circuit is 65 dB and power consumption is less than 9.6 mW.  相似文献   

6.
The vibration of backrests contributes to the discomfort of drivers and passengers. A frequency weighting exists for evaluating the vibration of vertical backrests but not for reclined backrests often used during travel. This experimental study was designed to determine how backrest inclination and the frequency of vibration influence perception thresholds and vibration discomfort when the vibration is applied normal to the back (i.e. fore-and-aft vibration when seated upright and vertical vibration when fully reclined). Twelve subjects experienced the vibration of a backrest (at each of the 11 preferred one-third octave centre frequencies in the range 2.5–25 Hz) at vibration magnitudes from the threshold of perception to 24 dB above threshold. Initially, absolute thresholds for the perception of vibration were determined with four backrest inclinations: 0° (upright), 30°, 60° and 90° (recumbent). The method of magnitude estimation was then used to obtain judgements of vibration discomfort with each of the four backrest angles. Finally, the relative discomfort between the four backrest angles, and the principal locations for feeling vibration discomfort in the body, were determined. With all backrest inclinations, absolute thresholds for the perception of vibration acceleration were dependent on the frequency of vibration. As the backrest inclination became more horizontal, the thresholds increased at frequencies between 4 and 8 Hz. For all backrest inclinations, the rate of growth of discomfort with increasing magnitude of vibration was independent of the frequency of vibration, so the frequency-dependence of discomfort was similar over the range of magnitudes investigated (0.04–0.6 m s?2 rms). With an upright backrest, the discomfort caused by vibration acceleration tended to be greatest at frequencies less than about 8 Hz. With inclined backrests (at 30°, 60°, and 90°), the equivalent comfort contours were broadly similar to each other, with greatest discomfort caused by acceleration around 10 or 12.5 Hz. At frequencies from 4 to 8 Hz, 30–40 percent greater magnitudes of vibration were required with the three inclined backrests to cause discomfort equivalent to that caused by the upright backrest. It is concluded that with an upright backrest the frequency weighting Wc used in current standards is appropriate for predicting the discomfort caused by fore-and-aft backrest vibration. With inclined and horizontal backrests, a weighting similar to frequency weighting Wb (used to predict discomfort caused by vertical seat vibration) appears more appropriate.  相似文献   

7.
Bi-directional polyimide (PI) electromagnetic microactuator with different geometries are designed, fabricated and tested. Fabrication of the electromagnetic microactuator consists of 10 μm thick Ni/Fe (80/20) permalloy deposition on the PI diaphragm by electroplating, high aspect ratio electroplating of copper planar coil with 10 μm in thickness, bulk micromachining, and excimer laser selective ablation. They were fabricated by a novel concept avoiding the etching selectivity and residual stress problems during wafer etching. A mathematical model is created by ANSYS software to analyze the microactuator. The external magnetic field intensity (Hext) generated by the planar coil is simulated by ANSYS software. ANSYS software is used to predict the deflection angle of the microactuator. Besides, to provide bi-directional and large deflection angle of microactuator, hard magnet Fe/Pt is deposited at a low temperature of 300 °C by sputtering onto the PI diaphragm to produce a perpendicular magnetic anisotropic field. This magnetic field can enhance the interaction with Hext to induce attractive and repulsive bi-directional force to provide large displacement. The results of magnetic microactuator with and without hard magnets are compared and discussed. The preliminary result reveals that the electromagnetic microactuator with hard magnet shows a greater deflection angle than that without one.  相似文献   

8.
This paper presents a digital readout integrated circuit (DROIC) implementing time delay and integration (TDI) for scanning type infrared focal plane arrays (IRFPAs) with a charge handling capacity of 44.8 Me while achieving quantization noise of 198 e and power consumption of 14.35 mW. Conventional pulse frequency modulation (PFM) method is supported by a single slope ramp ADC technique to have a very low quantization noise together with a low power consumption. The proposed digital TDI ROIC converts the photocurrent into digital domain in two phases; in the first phase, most significant bits (MSBs) are generated by the conventional PFM technique in the charge domain, while in the second phase least significant bits (LSBs) are generated by a single slope ramp ADC in the time domain. A 90 × 8 prototype has been fabricated and verified, showing a significantly improved signal-to-noise ratio (SNR) of 51 dB for low illumination levels (280,000 collected electrons), which is attributed to the TDI implementation method and very low quantization noise due to the single slope ADC implemented for LSBs. Proposed digital TDI ROIC proves the benefit of digital readouts for scanning arrays enabling smaller pixel pitches, better SNR for the low illumination levels and lower power consumption compared to analog TDI readouts for scanning arrays.  相似文献   

9.
In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100–250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.  相似文献   

10.
Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole–Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.  相似文献   

11.
Re-Active Passive devices have been developed to control low-frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50–200  Hz), and active control for controlling low frequencies (<150 Hz). The actuator was applied to control noise transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15–1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.  相似文献   

12.
Experiments on resonator micro-optic gyro (RMOG) with a digital proportional integral (PI) feedback scheme are performed. In this experimental setup, the key rotation sensing element is a polarization maintaining silica waveguide ring resonator (WRR) with a ring length of 7.9 cm and a diameter of 2.5 cm. A good linearity of 0.0015% over a wide range of ± 2 × 104 °/s can be achieved for the RMOG theoretically. The optimal digital PI feedback scheme is adopted in the frequency servo loop to reduce the reciprocal frequency fluctuations due to the WRR resonance frequency and laser frequency drifts. Residual equivalent input fluctuation can be reduced as low as 0.03 °/s/√Hz based on the optimal digital PI feedback scheme, which is close to the shot noise limited spectral density 0.02 °/s/√Hz of the RMOG with the input optical power of 0.2 mW. Relationship between RMOG output signal and angular rate is obtained from ± 0.1 °/s to ± 5 °/s. The standard deviation of the residuals between RMOG output results and linear fit curve is 0.066 °/s. For an integration of the processing circuit, all the processing circuit is implemented by a field programmable gate array (FPGA) instead of instruments. The output of this digitalized RMOG is obtained over a range of ± 550 °/s. The linearity of this digitalized RMOG is 0.0169%.  相似文献   

13.
An organic/inorganic hybrid 2 × 2 directional coupler (DC) Mach–Zehnder interferometer (MZI) thermo-optic (TO) switch was successfully designed and fabricated using simple direct ultraviolet photolithography process. The hybrid organic/inorganic waveguide structure includes poly-methyl-methacrylate-glycidyl-methacrylate (P(MMA-GMA)), SU-8 2005 and silica as core, upper cladding and under cladding, respectively. Device optimization and simulation were performed to decrease radiation loss and leakage loss, quicken response time and cut down power consumption. Measurements of the fabricated devices at 1550 nm wavelength result in a switching power of 7.2 mW, a response time of ∼100 μs, and crosstalk of −22.8 and −26.5 dB under cross state and bar state, respectively. Besides, the driving-noise-tolerance characteristics of this device were experimentally investigated by directly imposing a generated tunable noise on the pure driving signal (4 Vpp) and the minimum extinction ratio is larger than 18 dB under a noise level of 2.5 Vpp. The effect of noise on extinction ratio was found decreased with the increase of noise frequency.  相似文献   

14.
A tunable optical oscillator that generates signals at the micro- to millimeter-wave band for wireless communication applications is suggested. It uses directly modulated semiconductor lasers, in which sideband modes and four-wave mixing (FWM) conjugate modes are injection locked by the simple control of the applied modulation power. The signals at 15 GHz with phase noise of below ?95 dBc/Hz at an offset frequency of 100 kHz were experimentally obtained. The frequency of the generated signal is tunable, and the maximum achievable signal frequency is limited mainly by the bandwidth of the receiver.  相似文献   

15.
The objective of this study is to investigate the basic characteristics of the three axis mechanical impedances distributed at the fingers and palm of the hand subjected to vibrations along three orthogonal directions (xh, yh, and zh). Seven subjects participated in the experiment on a novel three-dimensional (3-D) hand–arm vibration test system equipped with a 3-D instrumented handle. The total impedance of the entire hand–arm system was obtained by performing a sum of the distributed impedances. Two major resonances were observed in the impedance data in each direction. For the hand forces (30 N grip and 50 N push) and body postures applied in this study, the first resonance was in the range of 20–40 Hz, and it was primarily observed in the impedance at the palm. The second resonance was generally observed in the impedance at the fingers, while the resonance frequency varied greatly with the subject and vibration direction, ranging from 100 to 200 Hz in the xh direction, 60 to 120 Hz in the yh direction, and 160 to 300 Hz in the zh direction. The impedance at the palm was greater than that at the fingers below a certain frequency in the range of 50–100 Hz, depending on the vibration direction. At higher frequencies, however, the impedance magnitude at the fingers either approached or exceeded that at the palm. The impedance in the zh direction was generally higher than those in the other directions, but it became comparable with that in the xh direction at frequencies above 250 Hz, while the impedance in the yh direction was the lowest. The frequency dependencies of the vibration power absorptions for the entire hand–arm system in the three directions were different, but their basic trends were similar to that of the frequency weighting defined in the current ISO standard. The implications of the results are discussed.  相似文献   

16.
We report on a LD-end-pumped passively Q-switched Nd:YAG ceramic laser by using a novel single wall carbon nanotube saturable absorber (SWCNT-SA). The SWCNT wafer was fabricated by electric Arc discharge method on quartz substrate with absorption wavelength of 1064 nm. We firstly investigated the continuous wave (CW) laser performance and scattering properties of Nd:YAG ceramic sample. For the case of passively Q-switched operation, a maximum output power of 376 mW was obtained at an incident pump power of 8.68 W at 808 nm, corresponding to an optical–optical conversion efficiency of 4.3%. The repetition rate as the increase of pump power varied from 14 to 95 kHz. The minimum pulse duration of 1.2 μs and maximum pulse energy of 4.5 μJ was generated at a repetition rate of 31.8 kHz.  相似文献   

17.
Porous lead zirconate titanate (PbZr0.3Ti0.7O3, PZT30/70) thick films and detectors for pyroelectric applications have been fabricated on alumina substrates by screen-printing technology. Low temperature sintering of PZT thick films have been achieved at 850 °C by using Li2CO3 and Bi2O3 sintering aids. The microstructure of PZT thick film has been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties were measured using HP 4284 at 1 kHz under 25 °C. The permittivity and loss tangent of the thick films were 94 and 0.017, respectively. Curie temperature of PZT thick film was 425 °C as revealed by dielectric constant temperature measurement. The pyroelectric coefficient was determined to be 0.9 × 10−8 Ccm−2 K−1 by dynamic current measurement. Infrared detector sensitive element of dual capacitance was fabricated by laser directly write technology. Detectivity of the detectors were measured using mechanically chopped blackbody radiation. Detectivity ranging from 1.23 × 108 to 1.75 × 108 (cm Hz1/2 W−1) was derived at frequency range from 175.5 Hz to 1367 Hz, and D*’s −3 dB cut-off frequency bandwidth was 1.2 kHz. The results indicate that the infrared detectors based on porous thick films have great potential applications in fast and wide-band frequency response conditions.  相似文献   

18.
Temperature-dependent impedance characteristics of ITO/Alq3/Al organic light-emitting diodes were studied in the frequency range from 40 to 108 Hz, and the temperature was varied from 10 to 300 K. At each temperature, the frequency-dependent complex impedance was measured under discrete bias voltages from −6 to +20 V, and the voltage-dependent impedance was measured at 102 Hz, 103 Hz, 104 Hz, and 105 Hz. A Cole–Cole plot shows that there is one relaxation, and a parallel capacitor–resistor network in series with a contact resistance could be considered as an equivalent electrical circuit to this device. As the temperature decreases, a radius in the Cole–Cole plot increases, which indicates an increase of resistance of the device.  相似文献   

19.
The relationship between Electroencephalogram (EEG) variation and subjective annoyance was investigated with 70 dBA white noise and pure tones at 160 Hz, 500 Hz and 4000 Hz being selected as exposed noise sources. The results indicate that when the duration of noise was less than 6 s, Average Power of Electroencephalogram (APEEG) varied irregularly. When the noise lasted for 5 min, the sum of the relative APEEG of θ wave and the relative APEEG of α wave increased with the subjective annoyance increasing under noise exposures. The maximum power of θ wave appeared in the frontal region, while the maximum power of α wave appeared in the occipital region. Up to the fifth minute after noise exposure, more than two APEEG maximums of θ wave appeared, and the time points of maximum occurrence shifted forwards slowly following the increase of exposed noise frequency. The interval between two time points of maximum occurrence was reduced with the increase of the exposed noise frequency.  相似文献   

20.
The characteristics of TiN thin films grown on glass substrates by very low frequency (60 Hz) PECVD were investigated along with the reactive plasma generated using a 60 Hz power source. The TiN film depositions were performed using a gaseous mixture of H2, N2 and TiCl4 onto a substrate positioned between two electrodes using a floating substrate holder with a heating unit. The substrate is electrically floated to avoid sample damages due to ion bombardment. As-grown TiN films showed a NaCl-type fcc structure with a (200) crystallographic plane, low resistivity (~60 μΩ cm) and gold-like color. Crystallinity was improved, impurities such as O and Cl were reduced, and the atomic ratio of N/Ti became stoichiometric with the increase of substrate temperature. Particularly, no chlorine component was detected above 500 °C. Also, the N2 partial pressure strongly affected the deposition rate and ratio of N/Ti. Otherwise, impurities and crystallinity barely changed with the change of N2 pressure. The atomic ratio of N/Ti, impurities, and crystallinity of the films significantly affected the optical and electrical properties. Consequently, we produced stoichiometric Cl-free TiN films with golden color above 500 °C at 60 mTorr. The effects of temperature played an important role in controlling the film properties compared to the N2 partial pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号