首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The near UV and visible circular dichroism (CD) spectra of rhodopsin solubilized and purified in sodium cholate have been determined. The CD properties of rhodopsin in 2 and 20mg/ml sodium cholate are substantially different in terms of the α band to β band ratio, and sensitivity of the near UV CD spectra to bleaching. Rhodopsin in 2mg/m l sodium cholate will regenerate (11- cis -retinal + opsin → rhodopsin) and has a CD spectrum similar to rhodopsin in rod outer segment membranes and digitonin which will also regenerate. On the other hand rhodopsin in 20mg/m l sodium cholate will not regenerate and has CD properties similar to other nonregenerable detergents (cetyltri-methylammonium salts and emulphogene). These results indicate that CD reflects the conformational integrity of functional (regenerable) rhodopsin and that sodium cholate can reversibly alter the conformation of rhodopsin. Finally the results further support the validity of using sodium cholate solubilized rhodopsin as a model system for studies on the structure and function of rhodopsin.  相似文献   

2.
The interactions of bilirubin with bile salts have been studied using fluorescence, circular dichroism and1H NMR methods. Enhancement of bilirubin fluorescence and induction of optical activity in bilirubin in the presence of cholate has been observed. Fluorescence enhancement is pronounced above the critical micelle concentration, while induced CD bands are detectable even in the premicellar region. Dehydrocholate and deoxycholate did not cause a fluorescence increase, but induced CD bands were observed for bilirubin in these cases. Gel permeation chromatography on Sephadex G-50 yielded a single bilirubin-cholate species at alkaline pH, while two species were obtained at neutral pH.1H NMR and CD spectral characterizations of these complexes are reported. A 4∶1 cholate-bilirubin mixture has been analysed by difference (nuclear Overhauser effect) NOE spectroscopy. Observation of strong, negative NOE, both intermolecular and intramolecular leads to the conclusion that specific methyl groups on bilirubin and cholate are proximal in the mixed micelle.  相似文献   

3.
The aggregation properties of novel bile acid analogs-phosphonobile salts (PBS)-have been studied. The critical micellar concentration of 23 and 24-phosphonobile salts were measured using fluorescence and 31P NMR methods. All the ten synthesized phosphonobile salts formed gels at different pH ranges in water. The pH range at which individual PBSs could gelate water was narrow and influenced by the number and conformation of hydroxyl groups. A reversible thermochromic system has been developed (with 23-phosphonodeoxycholate at pH 3.3), which changes color upon gelation. The investigation of the first hydrogels derived from trihydroxy bile acid analogs 1 and 6 was made using fluorescence, 31P NMR, X-ray crystallography, circular dichroism and SEM. The present studies reveal that the gel network consists of a chiral, fibrous structure possessing hydrophobic interiors.  相似文献   

4.
Effect of sodium cholate (NaC) bile salt on the absorption and fluorescence properties of berberine cation was studied in aqueous solution and water-cosolvent mixtures. The alteration of the fluorescent behavior with increasing NaC concentration showed an entirely different trend from that found previously in the presence of sodium dodecylsulfate. Binding to bile salt agglomerates led to significant fluorescence intensity enhancement, and the fluorescence lifetime of berberine proved to be highly sensitive to the structure and size of the aggregates. The dual exponential decay kinetics above 10 mM NaC concentration showed that the probe resided in two totally different binding sites. At 2-10 mM NaC concentrations, only primary aggregates were detected. The aggregate disrupting power of cosolvents decreased in the series of dimethylformamide, acetonitrile, formamide, and methanol. These compounds enhanced the water accessibility of berberine bound to aggregates and diminished the number of secondary aggregates.  相似文献   

5.
In this work, bovine hemoglobin (Hb) has been studied mainly by the fluorescence method. pH has been found to exert a profound effect on Hb structure. This has been confirmed by fluorescence and circular dichroism (CD) studies. The pH-induced change in quaternary structure of Hb indirectly affects its secondary structure. This in turn affects ligand binding to Hb at various pH. The binding of two amphiphiles, a bile salt and a surfactant, have been investigated. The pH-induced structural modification of Hb has been confirmed by studies with the well-known denaturant urea and the polarity probe ANS, which has been used as an extrinsic fluorophore.  相似文献   

6.
The interaction of submicellar concentrations of various physiologically important unconjugated [sodium deoxycholate (NaDC), sodium cholate (NaC)] and conjugated [sodium glycodeoxycholate (NaGDC), sodium glycocholate (NaGC), sodium taurodeoxycholate (NaTDC), sodium taurocholate (NaTC)] bile salts with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles in solid gel (SG) and liquid crystalline (LC) phases was investigated using the excited-state prototropism of 1-naphthol. Steady-state and time-resolved fluorescence of the two excited-state prototropic forms of 1-naphthol indicate that submicellar bile salt concentration induces hydration of the lipid bilayer membrane into the core region. This hydration effect is a general phenomenon of the bile salts studied. The bilayer hydration efficiency of the bile salt follows the order NaDC > NaC > NaGDC > NaTDC > NaGC > NaTC for both DPPC and DMPC vesicles in their SG and LC phases.  相似文献   

7.
《Analytical letters》2012,45(12):2094-2106
The interactions between ciprofloxacin and hemocyanin were investigated by ultraviolet-vis absorbance, circular dichroism, and fluorescence spectra techniques. The ciprofloxacin effectively quenched the intrinsic fluorescence of hemocyanin via static quenching. There is only one class of binding site at the interface of hemocyanin. The hydrophobic and electrostatic interactions played a major role in the binding process of ciprofloxacin-hemocyanin system. The distance between the tryptophan residues and ciprofloxacin was calculated using F?rster theory to be 3.859 nm. The alteration of the environment of tryptophan residues and the secondary protein structure in the presence of the ciprofloxacin was confirmed by circular dichroism, synchronous, and three-dimensional fluorescence spectra.  相似文献   

8.
The binding of three nucleobase-modified β-CDs, (i.e., mono(6-ade-6-deoxy)-β-CD 2, mono(6-thy-6-deoxy)-β-CD 3, and mono(6-ura-6-deoxy)-β-CD 4) with four bile salts (deoxycholate, DCA; cholate, CA; glycocholate, GCA; and taurocholate, TCA) were investigated by means of circular dichroism, 2D NMR spectroscopy and calorimetric titration. The results show the binding of host 2 with bile salts is weaker and different from hosts 3 and 4. Enthalpy changes between hosts 2–4 and bile salts are much more favorable than those of native β-CD 1, whereas the entropy changes are unfavorable.  相似文献   

9.
In the framework of research on the sodium bile salts, solutions of sodium cholate and glycocholate had been studied only at three ionic medium concentrations. In this paper, experiments in two other concentrations of ionic medium are carried out both to verify the behaviour dependence on the ionic medium and to apply the results of this paper to a future investigation on solutions containing contemporary sodium cholate and glycocholate. To this aim, solubility, protonation constants, lead (II) salts solubility products at 25 degrees C and in 0.300 and 0.750 mol dm(-3) N(CH3)4Cl were determined. The formed species in solutions containing lead (II) together with the selected bile salts and the behaviour of the sodium salts in micellar and premicellar solutions were investigated, too. The obtained results were compared with those obtained at the other ionic medium concentrations.  相似文献   

10.
An evaluation of the interactions of phenothiazine tranquilizer drugs (promazine hydrochloride; PMZ and promethazine hydrochloride; PMT) with bile salts viz., sodium cholate (NaC) and sodium deoxycholate (NaDC) in aqueous medium, investigated through different physicochemical measurements is presented in this work. The mixed micellization behavior and surface properties of the phenothiazine-bile salt systems have been analyzed by conductivity and surface tension measurements. Application of different theoretical approaches to all the phenothiazine-bile salt mixtures shows a non-ideal behavior. Further, the spectroscopic techniques such as UV-visible and steady state fluorescence have been employed to study the binding of phenothiazines with bile salts. The stoichiometric ratios, binding constants (K), and free energy change (ΔG) for the phenothiazine-bile salt complexes were estimated from the Benesi-Hildebrand (B-H) double reciprocal plots obtained by using the changes in spectral intensities of phenothiazines on addition of bile salts. The results are discussed in the light of use of bile salts as promising drug delivery agents for phenothiazines and hence improve their bioavailabilty.  相似文献   

11.
Two β-cyclodextrin derivatives bearing appended quinolyl and isoquinolyl arms,i.e.mono-(6-quinolyl- 6-deoxy)-β-cyclodextrin(1) and mono-(6-isoquinolyl-6-deoxy)-β-cyclodextrin(2) were synthesized in satisfactory yields and fully characterized.Their original conformations and binding behaviors toward four bile salt guests,that is,sodium cholate(CA),sodium deoxycholate(DCA),sodium glycocholate (GCA),and sodium taurocholate(TCA),were investigated by means of fluorescence,circular dichroism and 2D NMR spectroscopy.The study of solution structures revealed that both quinolyl and isoquinolyl arms were located outside the cyclodextrin cavity.The results obtained from the fluorescence titrations showed that the binding abilities of hosts 1 and 2 with selected bile salts varied in an order of DCA > CA > GCA.The selective binding of hosts toward bile salt guests was discussed from the viewpoints of induced-fit and multiple binding.  相似文献   

12.
The capacity of solubilization of the five physiological bile salts: cholate, deoxicholate, hiocholate, quenodeoxicholate and taurocholate were assayed on two low aqueous soluble antimicotic agents: griseofulvin and ketoconazole. The fluorescence emission of these antimicotic agents was used as tool to study their solubilization in bile salts micelle. Griseofulvin enhanced its fluorescence and shifted to the blue in the presence of bile salts micelles. The shift was dependent of the polarizability of the micelle zone where the antimicotic is located. Cholate and deoxicholate showed a good solubilization capacity for griseofulvin: 321 mol and 394 mol surfactant per mol of antimicotic, respectively. These values decreased in the presence of NaCl in agreement with a compactness of the micelle due to an electrostatic repulsion decreasing between the bile salts monomer negatively charged. The imidazole and piperazine rings present in the ketoconazole molecule give to this the capacity of fluorescence emission with two vibronic bands at 364 nm and 382 nm, respectively. The solubilization in cholate micelle induced an increase in the band at 382 nm, while deoxicholate induced the opposite effect, suggesting a strong intercation between the polar groups of ketoconazole molecule (imidazole and piperazine rings) and the OH of these bile salts. The solubilization capacities were 47 mol and 117 mol surfactant per ketoconazole mol for cholate and deoxicholate, respectively. The other bile salts assayed did not show any appreciable solubilization capacity. Ketoconazole and griseofulvin solubilized in micelles of cholate and deoxicholate were stable during the thermal recycling treatment for over 100 days.  相似文献   

13.
Effects of two bile salts, namely sodium deoxycholate (NaDC) and sodium cholate (NaC), on DPPC small unilamellar vesicles have been investigated using the steady-state fluorescence anisotropy (r ss ) of diphenylhexatriene (DPH) as a tool. It was found that the variation of r ss is sensitive enough to monitor different stages of interaction of bile salts with DPPC vesicles. NaDC induced significant changes in the membrane well below its CMC (6 mM). Even at 4 mM, which is still lower than the CMC, the phospholipids were completely solubilised by the NaDC micelles. The effect of NaC on DPPC vesicles, however, was much less significant, especially in the sub-micellar concentration regime. Being more hydrophilic NaC does not interact with the membrane efficiently. Complete solubilisation of phospholipids took place only when the concentration of NaC was above its CMC (16 mM). The experiments also showed that the bile salt-induced changes of vesicle structure were strongly dependent on the concentration of the bile salt and not on the molar ratio of lipid and bile salt.  相似文献   

14.
[reaction: see text] Binding behavior of L- and D-tryptophan-modified beta-cyclodextrins (L/D-Trp-beta-CD) (1 and 2) with four bile acids, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA), and taurocholate (TCA), has been investigated by fluorescence, circular dichroism, and 2D-NMR spectroscopies and fluorescence lifetime measurement, as well as isothermal titration microcalorimetry. From the induced circular dichroism (ICD) and 2D NMR spectra, it is deduced that the D-Trp moiety of 2 attached to beta-CD is more deeply self-included in the cavity than that of the antipodal L-Trp moiety of 1, indicating appreciably enantioselective binding of the chiral sidearm by beta-CD. Interestingly, the original difference in conformation between 1 and 2 led to quite a large difference in affinity toward DCA, giving 3.3 times higher binding ability for 2 than for 1. Thermodynamically, the inclusion complexation of 1 and 2 with bile acids was entirely driven by favorable enthalpy change (DeltaH degrees) with accompanying negative entropy change (DeltaS degrees). The stronger binding of bile acids by L/D-Trp-beta-CD is attributable to higher enthalpic gains. The combined use of the calorimetric and NMR ROESY spectral examinations revealed the correlation between the thermodynamic parameters and the role of sidearm conformation in modified beta-cyclodextrins.  相似文献   

15.
The effect of 300 nm irradiation on the three lens crystallins, α-, β-, and γ-, was studied by using fluorescence and circular dichroism techniques. α-Crystallin showed a pronounced change in tertiary structure as manifested in fluorescence and circular dichroism measurements. This finding is in agreement with our earlier findings that the tryptophan residues of α-crystallin are more exposed than those of the other two crystallins. The results of studies using inhibitors specific for the different active species of oxygen suggest that H2O2-mediated damage is involved in the change of tertiary structure of the proteins. Analyses of circular dichroism spectra indicate that, upon irradiation, the secondary structure of α-crystallin remains virtually unaltered, and that the change in tertiary structure results primarily from photoinduced damage to the tryptophan residues.  相似文献   

16.
The aggregation behavior of two bile acid salts (i.e., sodium cholate and sodium deoxycholate) has been studied in their aqueous solutions of three different concentrations (i.e., 30, 90,and 300 mM) by means of molecular dynamics computer simulations. To let the systems reach thermodynamic equilibrium, rather long simulations have been performed: the equilibration period, lasting for 20-50 ns, has been followed by a 20 ns long production phase, during which the average size of the bile aggregates (regarded to be the slowest varying observable) has already fluctuated around a constant value. The production phase of the runs has been about an order of magnitude longer than the average lifetime of both the monomeric bile ions and the bonds that link two neighboring bile ions together to be part of the same aggregate. This has allowed the bile ions belonging to various aggregates to be in a dynamic equilibrium with the isolated monomers. The observed aggregation behavior of the studied bile ions has been found to be in good qualitative agreement with experimental findings. The analysis of the results has revealed that, due to their molecular structure, which is markedly different from that of the ordinary aliphatic surfactants, the bile ions form rather different aggregates than the usual spherical micelles. In the lowest concentration solution studied, the bile ions only form small oligomers. In the case of deoxycholate, these oligomers, such as the ordinary micelles, are kept together by hydrophobic interactions, whereas in the sodium cholate system, small hydrogen-bonded aggregates (mostly dimers) are also present. In the highest concentration systems, the bile ions form large secondary micelles, which are kept together both by hydrophobic interactions and by hydrogen bonds. Namely, in these secondary micelles, small hydrophobic primary micelles are linked together via the formation of hydrogen bonds between their hydrophilic outer surfaces.  相似文献   

17.
Two novel permethylated beta-cyclodextrin (PM-beta-CD) derivatives, i.e., 6I-O-(1-naphtholxy)-2I,31-di-O-methylhexakis(2II-VII,3II-VII,6II-VII-tri-O-methyl)-beta-cyclodextrin (1) and 6I-O-(8-hydroxyquinoline)-2I,31-di-O-methylhexakis(2II-VII,3II-VII,6II-VII- tri-O-methyl)-beta-cyclodextrin (2), were synthesized in satisfactory yields, and their inclusion modes, complex-induced fluorescent behaviors, binding ability, and selectivity for bile salts of biological relevance (cholic acid sodium salt, CA; deoxycholic acid sodium salt, DCA; glycochoic acid sodium salt, GCA; taurocholic acid sodium salt, TCA) were investigated by the circular dichroism, 2D NMR, steady-state, and time-resolved fluorescent spectra. The results obtained from induced circular dichroism and ROESY spectra show that the chromophore groups of 1 and 2 reside in the central cavity of PM-beta-CD, and are expelled to the region of narrow torus rim upon complexation with bile guests, which presents the binding mode of cooperative inclusion. The transfer of the chromophore groups from the central cavity to the more hydrophobic torus rim leads to the remarkable increase of fluorescent intensities and longer fluorescent lifetimes of hosts 1 and 2 upon gradual addition of bile salts, which is importantly distinct from the molecular recognition of the chromophore-modified beta-CD species with bile salts. Interestingly, hosts 1 and 2 present much stronger binding ability for bile guests than PM-beta-CD. Differing from native beta-CD, all the PM-beta-CDs are more prone to include bile salts with longer tails, such as GCA and TCA. Their corresponding binding ability and molecular selectivity are closely discussed from the viewpoints of difference of cavity size/shape between beta-CD and PM-beta-CD, effect of substituent groups, and structures of bile guests, respectively.  相似文献   

18.
Owing to the physiological importance of the micellization process of bile salts, the critical micelle concentration (CMC) becomes a fundamental parameter in the evaluation of their biological activities. The present study suggests fluorescence probing, using 1,6-diphenylhexatriene (DPH), as a simple, convenient, sensitive and economic method for monitoring the micellization process of bile salts in aqueous medium. Three independent parameters: fluorescence intensity, anisotropy and lifetime of DPH have been employed successfully for determining the CMC of two bile salts, sodium deoxycholate (NaDC) and sodium cholate (NaC), in aqueous medium. The CMC values reported by all the above three parameters of DPH are found to be same and it is 16 mM for NaC and 6 mM for NaDC at 25 degrees C in unbuffered solution. The effect of temperature and ionic strength on the micellization process has also been investigated employing DPH as a fluorescent probe. Increasing temperature leads to the formation of fluffier micelles with less rigid interior for both NaC and NaDC. The micelle core of NaC is less perturbed by the presence of NaCl whereas in case of NaDC, the aggregates provide DPH a more nonpolar and rigid environment in presence of NaCl than that in absence of salt.  相似文献   

19.
Sodium cholate and sodium deoxycholate dissolved in formamide were applied as stationary phases in gas chromatography. The critical micelle concentration of sodium cholate and deoxycholate in formamide was determined by surface tension measurements. The relation of retention times vs. concentration of bile salts was investigated for isomers of monoterpenes and xylenes. The enthalpy of binding of selected compounds with sodium cholate and sodium deoxycholate monomers and micelles was determined.  相似文献   

20.
The interaction of human serum albumin (HSA) with 1,10‐phenanthroline‐ethyldithiocarbamatopalladium(II) nitrate complex, [Pd(phen)(Et‐dtc)]NO3, has been studied by using absorption, fluorescence and circular dichroism spectroscopic measurements. UV‐Vis studies imply that The peptide strands of protein molecules extended more (denatured) upon the addition of Pd(II) complex. This process is spontaneous and exothermic. A fluorescence quenching reaction of Pd(II) complex and HSA was observed and quenching mechanism was suggested as static quenching according to Stern‐Volmer equation. The number of binding sites (n) and apparent association constant (KA) were calculated using fluorescence quenching data. The circular dichroism results revealed the conformational changes in secondary structure of protein upon its interaction with Pd(II) complex. In these interaction studies, several thermodynamic and binding parameters are also determined which may provide deeper insights into structural changes induced by an antitumor Pd(II) complex on the protein as the metal complex side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号