首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
17O enriched sodium borophosphate glasses were prepared from isotopically enriched NaPO3 and H3BO3. These glasses have been studied by 17O, 11B and 31P NMR including 17O and 11B multiple quantum magic angle sample spinning (MQMAS), 11B-31P heteronuclear correlation (HETCOR) NMR and 11B{31P} rotational echo double resonance (REDOR). For comparison, the crystalline borophosphates BPO4 and Na5B2P3O13 were included in the investigations. The latter compound shows three sharp 31P resonances at -0.2, -2 and -8 ppm and two BO4 sites that can only be resolved by MQMAS. The 17O NMR spectra were recorded using both the static echo method at medium magnetic field (9.4 T) as well as MAS and MQMAS methods at high field (17.6 T). In total, five oxygen sites were identified in these borophosphate glasses: P-O-P, Na...O-P, P-O-B, B-O-B, Na...O-B. However, these five sites are not present simultaneously in any of the glasses. The 17O MQMAS spectra prove that P-O-B links play a major role in borophosphate glasses. These results are confirmed by the complementary 11B MAS spectra that show the presence of asymmetric and symmetric trigonal groups BO3a and BO3s and two tetrahedral BO4 units. 11B{31P} REDOR NMR is used to give independent information to assign the 11B lines to structural units present in the glasses. These REDOR measurements reveal that B-O-P bonds are present for each borate unit, including the BO3 groups. Particularly, a structural proposal for the two different BO4 resonances is given in terms of a different number of bonded phosphate tetrahedra. The 31P MAS spectra are usually broad and not well resolved. It is shown by 11B-31P HETCOR NMR that a possible structural assignment of a 31P signal at about -20 ppm to Q2 units as in binary sodium phosphate glasses is wrong and that the phosphate tetrahedron belonging to this resonance must be connected to borate groups.  相似文献   

2.
Niobiophosphate compounds with a large range of niobium and oxygen environments were studied with (93)Nb and (17)O solid-state NMR. (93)Nb isotropic chemical shift of pure niobate Nb(ONb)(6), pure phosphate Nb(OP)(6) and mixed phosphate-niobate Nb(OP)(x)(ONb)((6-x)) (1相似文献   

3.
Protocols are presented for obtaining natural abundance (17)O magic angle spinning and static NMR spectra in the solid state. Rotor-assisted population transfer (RAPT), Carr-Purcell-Meiboom-Gill (CPMG) echo trains and cross-polarisation (CP) are all used to obtain spectra of sites with large as well as small electric field gradients in proton and non-proton containing inorganic materials. Spectra are of sufficient quality to obtain the typical NMR parameters by standard fitting of the spectra. The protocol is then applied to identifying the changes that accompany radioactive decay in zircon (ZrSiO(4)) where enrichment is impossible. The (17)O NMR spectra of a partially metamict zircon sample clearly show evidence of bridging oxygens being produced as a consequence of radiation damage. The spectra have been acquired at moderate magnetic fields over periods typically of 60 h (1 weekend) and it is concluded that a 'routine' overnight (17)O experiment of 15 h at high field (e.g. 21 T) may well be possible.  相似文献   

4.
We have obtained 17O nuclear magnetic resonance spectra of a variety of 17O-labeled solids (Mg(OH)2, Ca(OH)2, boehmite (AlO(OH)), talc (Mg3Si4O10(OH)2), (C6H5)3SiOH, and amorphous SiO2) using high-field static and “magic-angle” sample spinning techniques, together with 1H cross polarization and dipolar decoupling. Our results show that large cross-polarization enhancements can be obtained and that reliable second-order quadrupolar powder lineshapes can be observed under cross-polarization conditions. We have also investigated the dynamics of cross polarization for several samples, including measurements of cross-relaxation rates and 1H and 17O rotating-frame spin-lattice relaxation times. We show that rapid 17O rotating-frame spin-lattice relaxation reduces the cross-polarization enhancement in some cases and that differences in cross-relaxation rates can be used to “edit” spectra by selectively enhancing protonated oxygen resonances (in general, hydroxide versus oxide ions, in inorganic solids). When applied to high surface area metal oxides such as amorphous silica, this selectivity enables the observation of resonances from surface hydroxyl groups that are difficult to detect by conventional 17O NMR. Overall, the cross-polarization approach appears to have considerable utility for aiding in the interpretation of 17O NMR spectra of complex inorganic solids.  相似文献   

5.
Multiple-quantum magic-angle spinning and double-rotation NMR techniques were applied in the high field of 17.6 T to the study of oxygen-17-enriched zeolites A and LSX with the ratio Si/Al = 1. A monotonic correlation between the isotropic value of the chemical shift and the Si-O-Al bond angle alpha (taken from X-ray data) could be found. Hydration of the zeolites causes a downfield 17O NMR chemical shift of about 8 ppm with respect to the dehydrated zeolites. Ion exchange of the hydrated zeolites generates stronger chemical shift effects. The increase of the basicity of the oxygen framework of the zeolite LSX is reflected by a downfield shift of approx. 10 ppm going from the lithium to the cesium form, and the substitution of sodium by thallium in the zeolite A causes a shift of 34 ppm for the O3 signal. 17O DOR NMR spectra are superior to 17O 3QMAS NMR spectra, featuring a resolution increase by a factor of 2 and are about equal with respect to the sensitivity. The residual linewidths of the signals in the 17O DOR and 17O 5QMAS NMR spectra can be explained by a distribution of the Si-O-Al angles in the zeolites.  相似文献   

6.
Oxygen is an abundant element that is present in almost all biologically relevant molecules. NMR observation of oxygen has been relatively limited since the NMR-active isotope, oxygen-17, is only present at a 0.037% natural abundance. Furthermore, as a spin 5/2 nucleus oxygen-17 has a moderately strong quadrupole moment which leads to fairly broad resonances (T(2)=1-4 ms). However, the similarly short T(1) relaxation constants allow substantial signal averaging, whereas the large chemical shift range (>300 ppm) improves the spectral resolution of (17)O NMR. Here it is shown that high-quality, natural abundance (17)O NMR spectra can be obtained from rat brain in vivo at 11.74 T. The chemical shifts and line widths of more than 20 oxygen-containing metabolites are established and the sensitivity and potential for (17)O-enriched NMR studies are estimated.  相似文献   

7.
We present here high-resolution solid state NMR spectra of several oxide and silicate materials that illustrate the improvements obtainable with very high external fields (18.8 and 21.1 T), with probes capable of tuning to a wide frequency range that allow observations of nuclides from high to low magnetogyric ratio. We discuss 27Al MAS spectra for the zeolite scolecite (CaAl2Si3O10 x 3H2O), 17O MAS data for analcime (NaAlSi2O6 x H2O), calcium monoaluminate (CaAI2O4), and titanite (CaTiSiO5), 39K spin-echo spectra for leucite (KAlSi2O6), microline (KAlSiO8), muscovite (KAl2(AlSi3O10)(OH2) and a potassium aluminosolicate glass, and preliminary 73Ge spin-echo MAS spectra for crystalline and glassy germanium dioxide (GeO2).  相似文献   

8.
We have presented an experimental investigation of the carboxyl oxygen NMR parameters for four distinct sites in l-valine and l-isoleucine. The carboxyl (17)O quadrupolar coupling constant, C(Q), and isotropic chemical shift, delta(iso), for these compounds are obtained by analyzing two-dimensional (17)O multiple-quantum magic-angle spinning (MQMAS) and/or 1D MAS spectra. The values of C(Q) and delta(iso) found to be in the range of 7.00-7.85 MHz, and 264-314 ppm, respectively. Extensive quantum chemical calculations at the density functional levels have been performed for a full cluster of l-valine molecules and a few theoretical models. The calculated results indicated that there was a correlation between the (17)O NMR parameters and C-O bond lengths, which was helpful for the spectral assignment. They also demonstrated that the torsion angle of l-valine plays an important role in determining the magnitudes of (17)O NMR parameters.  相似文献   

9.
125Te static nuclear magnetic resonance (NMR) and 23Na and 125Te magic angle spinning (MAS) NMR have been used, in conjunction with X-ray diffraction, to examine the structure and crystallisation behaviour of glasses of composition xNa2O.(1-x)TeO2 (0.075 x 0.4). The MAS NMR 23Na spectra from the glasses are broad and featureless but shift by approximately +5 ppm with increased x, i.e. as the system becomes more ionic. The static 125Te NMR spectra show an increase in axial symmetry with increasing x, indicating a shift from predominantly [TeO4] to [TeO3] structural units. The 23Na and 125Te spectra from the crystallised samples have been fitted to obtain information on the sites in the metastable crystal phases, which are the first to form on heating and which are therefore more closely related to the glass structure than thermodynamically stable crystal phases. New sodium tellurite phases are reported, including a sodium stabilised, face centred cubic phase related to delta-TeO2; a metastable form of Na2Te4O9 containing 3 sodium and 4 tellurium sites; and a metastable form of Na2Te2O5 containing 2 sodium sites. There is evidence of oxidation of TeIV to TeVI occurring in glasses with high values of x and, at x=0.40 and 0.50 (outside the glass forming range), some sodium metatellurate (Na2TeO4) is formed at the same time as sodium metatellurite (Na2TeO3). The 125Te shift is very sensitive to environment within the sodium tellurite system, covering more than 320 ppm, with anisotropies varying from 640 to 1540 ppm. The lack of features in the 125Te spectra of the glass phases, combined with the large shift range and high but variable anisotropy, means than it is not possible to obtain a unique fit to any presumed species present. Furthermore, the chemical shift anisotropy parameters for three of the four Te sites in the Na2Te4O9 phase are found to lie outside the range used for previous simulations of glass spectra.  相似文献   

10.
The NMR spectra of solutions of 30% 17O-enriched H2O and D2O in nitromethane display the resonances of the three isotopomers H2O, HDO, and D2O. All 17O, 1H and 17O, 2H coupling constants and the primary and secondary isotope effects on J(17O, 1H) have been determined. The primary effect is -1.0 +/- 0.2 Hz and the secondary effect is -0.07 +/- 0.04 Hz. Using integrated intensities in the 17O NMR spectra, the equilibrium constant for the reaction H2O + D2O right harpoon over left harpoon 2HDO is found to be 3.68 +/- 0.2 at 343 K. From the relative integrated intensities of proton-coupled and -decoupled spectra the 17O-{1H} NOE is estimated for the first time, resulting in values of 0.908 and 0.945 for H2O and HDO, respectively. This means that dipole-dipole interactions contribute about 2.5% to the overall 17O relaxation rate in H2O dissolved in nitromethane. Copyright 1999 Academic Press.  相似文献   

11.
The effects of different heat treatment schemes (i.e. successively or directly heated to particular temperatures) and atmospheres (air or nitrogen) on the solid-state NMR spectra obtained from (TiO(2))(0.15)(ZrO(2))(0.05)(SiO(2))(0.80) sol-gel materials are investigated. A combination of 1H, 13C, 17O and 29Si NMR is used. 29Si MAS NMR indicates that the extent of condensation of the silica-based network strongly depends on the maximum temperature the sample has experienced, but the condensation is largely independent of the details of the heat treatment scheme and atmosphere used. For sol-gel produced silicate-based materials the results show that the equilibrium structure at each temperature is reached rapidly compared to the time (2h) spent at that temperature. The 17O NMR results confirm that a nitrogen atmosphere does significantly reduce loss of 17O from the structure but care must be taken since there could be differential loss of 17O from the regions having different local structural characteristics.  相似文献   

12.
An NMR technique to measure pure-phase two-dimensional nutation NMR spectra, that yields higher resolution than traditional nutation experiments is reported. Using this technique 93Nb nutation NMR spectra of PbNb2O6 and the technologically important Pb(Mg1/3Nb2/3)O3 (PMN) have been measured and the quadrupolar coupling constant of the niobium site in PbNb2O6 (C(Q) = 19 +/- 2 MHz) determined. Estimates of the quadrupolar coupling constants for three different resonances associated with different niobium(V) sites in PMN (C(Q) < 1.2 MHz, approximately 17 MHz, and > 62 MHz) are also reported.  相似文献   

13.
Beta-sialons are ceramic phases occurring in the SiO(2)-Si(3)N(4)-AlN-Al(2)O(3) system. A series of samples with differing compositions has been investigated by magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy and powder X-ray diffraction (XRD). Although the constituent nitrogen nuclei occupy positions of low symmetry in the beta-sialon structure, 14N NMR spectra could be recorded for the samples examined. The origin of the 14N signal could be traced to the presence of an aluminium nitride (AlN) impurity phase with the help of 27Al NMR and XRD results. Similarly, the existence of Al(2)O(3) grains could be readily detected for a number of samples. Thus, the combination of 14N and 27Al NMR is shown to be an especially effective tool in identifying and characterizing impurity phases in sialon ceramics, complementing the results obtained from standard XRD analysis.  相似文献   

14.
Controlled-pore glasses (CPGs) are silica-based materials which provide an adequate model system for a better understanding of the radiation chemistry of glasses, especially under nanoscopic confinement. This paper presents a characterization of a nanoporous CPG before and after electron irradiation using multinuclear solid-state magnetic resonance (NMR). 1H MAS NMR has been used for studying the surface proton sites and it is observed that the irradiation leads to a dehydration of the material. Accordingly, concerning the silicon sites near the surface, the observed variation of the Q4, Q3 and Q2 species from 1H-29Si CPMAS spectra shows an increase of the surface polymerization under irradiation, implying in majority a Q2 to Q3/Q4 conversion mechanism. Similarly, 1H-17 O CPMAS measurements exhibit an increase of Si-O-Si groups at the expenses of Si-OH groups. In addition, modifications of the environment of the residual boron atoms are also put in evidence from 11B MAS and MQMAS NMR These data show that MAS NMR methods provide sensitive tools for the characterization of these porous glasses and of the tiny modifications occurring under electron irradiation.  相似文献   

15.
Organic matter from the Murchison meteorite shows pronounced spinning sidebands of the (1)H MAS NMR spectrum and exhibits a large bulk magnetization of 0.75emicro/g extrapolated to 94kOe at 300K. By comparison with data of diamagnetic polystyrene and laponite clay mixed with ferrimagnetic gamma-Fe(2)O(3) nano-particles, we show that the spinning sidebands arise from a combination of dipolar couplings of a given (1)H to magnetic particles, seen in a backscattered-electron image, and to other protons. Signal loss and significant broadening of protonated-carbon peaks in (13)C MAS NMR spectra of polystyrene with Fe(2)O(3) nano-particles is demonstrated, and implications for (13)C NMR spectroscopy of Murchison meteorite are discussed.  相似文献   

16.
Determination of NMR interaction parameters from double rotation NMR   总被引:1,自引:1,他引:0  
It is shown that the anisotropic NMR parameters for half-integer quadrupolar nuclei can be determined using double rotation (DOR) NMR at a single magnetic field with comparable accuracy to multi-field static and MAS experiments. The (17)O nuclei in isotopically enriched l-alanine and OPPh(3) are used as illustrations. The anisotropic NMR parameters are obtained from spectral simulation of the DOR spinning sideband intensities using a computer program written with the GAMMA spin-simulation libraries. Contributions due to the quadrupolar interaction, chemical shift anisotropy, dipolar coupling and J coupling are included in the simulations. In l-alanine the oxygen chemical shift span is 455 +/- 20 ppm and 350 +/- 20 ppm for the O1 and O2 sites, respectively, and the Euler angles are determined to an accuracy of +/- 5-10 degrees . For cases where effects due to heteronuclear J and dipolar coupling are observed, it is possible to determine the angle between the internuclear vector and the principal axis of the electric field gradient (EFG). Thus, the orientation of the major components of both the EFG and chemical shift tensors (i.e., V(33) and delta(33)) in the molecular frame may be obtained from the relative intensity of the split DOR peaks. For OPPh(3) the principal axis of the (17)O EFG is found to be close to the O-P bond, and the (17)O-(31)P one-bond J coupling ((1)J(OP)=161 +/- 2 Hz) is determined to a much higher accuracy than previously.  相似文献   

17.
Systematic NMR and magnetization data with concentration show that for decreasing x these systems go from ferromagnetic (F) to anti-ferromagnetic (AF) order by passing a mixed phase region where both magnetic orders coexist in different domains. The magnetic phase diagrams for both alloy series are nearly coincident. The NMR spectra show that the Cu or Ni atoms substitute randomly onto Pd sites and we find no evidence that the participation of Mn atoms in F or AF domains is at all correlated with their nearest neighbour environments. In the limit where the AF order becomes largely dominant the samples exhibit a magnetic anisotropy after field cooling.  相似文献   

18.
By means of 27Al triple quantum Magic-Angle Spinning Nuclear Magnetic Resonance (3QMAS NMR) and 27Al[19F] WISE MAS NMR, we were able to detect three different Al-F sites on the surface of fluorinated gamma-alumina. Three 19F resonances at 9, 20, and 33 ppm (from C6F6) correlated to 27Al resonances in the octahedral range. While the positions of the maxima in the 27Al dimension were ill-defined due to the inherently low efficiency of the 27Al[19F] CPMAS process, the center of gravity of the lines shifted significantly upfield in that dimension with increasing wt.% F. Tentatively, these three resonances were assigned to (VI)Al(O(6-n)Fn) (n = 1, 2, 3) environments on the F/gamma-Al2O3 surface. At F contents above levels corresponding to the full fluorination of the gamma-Al2O3 surface, neoformation of an AlF3 x 3H2O phase was also evidenced with an 19F resonance at -8 ppm and with an 27Al resonance at -17 ppm.  相似文献   

19.
A review of studies on the ortho Mannich bases containing various substituents in the phenyl ring on the basis of1H,13C and15N nuclear magnetic resonance (NMR) spectra in various solvents over the temperature range 110–298 K is presented. Some new results are also included. The data gathered so far show that there is some critical (inversion) range of ΔpK a (= pK a(NH+) − pK a(OH)) in which the proton transfer equilibrium appears. This inversion range is well reflected in the behaviour of secondary deuterium isotope effect in13C NMR spectra. A strong temperature effect on the strength of hydrogen bonding should be emphasized. The1H chemical shift for trichloroderivative increases from 13.5 at room temperature up to 17 ppm at 130 K when the proton is equally shared between the bridging atoms (1 J(1H,15N) = 30–40 Hz). The potential for the proton motion in such bridges is discussed taking into account the behaviour in the ultraviolet and infrared spectra. The role of dimerization in proton transfer equilibria is shown. In addition the rotation of OH groups involved in hydrogen bond formation and nitrogen pyramidal inversion was studied by the1H dynamical NMR spectra.  相似文献   

20.
We report the first experimental determination of the carboxylate oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in polycrystalline γ-glycine. Analysis of magic-angle spinning (MAS) and stationary 17O NMR spectra of [17O]-γ-glycine obtained at 9.4, 14.1, 16.4, and 18.8 T yields the magnitudes of the 17O EFG and CS tensors and the relative orientations between the two tensors. Extensive quantum chemical calculations at both the restricted Hartree–Fock and density functional levels have been performed to present the absolute tensor orientations in term of the molecular frame. We have demonstrated that 17O NMR tensor information could be unambiguously derived by the multiple field analyses of stationary 17O NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号