首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitization of the excited triplet state of a novel symmetrical Bis(dialkylamino)phenoxazinium salt was developed in the presence of Hg2+. This effect was used to determine the concentration of Hg2+ in different water samples. The phenoxazinium salt sensor was characterized by different spectroscopic tools such as: UV, FTIR, NMR and fluorescence spectra. The sensor has an emission band at 347 nm in DMSO. Hg2+ in DMSO at pH 5.6 can remarkably quench the fluorescence intensity of the sensor at 347 nm and a new band was appeared at 436 nm due to the strong complex formation between Hg2+ and sensor. The quenching of the band intensity at 347 and the enhancement of the intensity of the new band at 436 were used to determine the Hg2+ in different waste water samples. The dynamic range found for the determination of Hg2+ concentration is 8.7?×?10-10 – 1.4?×?10-6 mol L?1 with a detection limit of 5.8?×?10?10 mol L?1 and quantification detection limit of 1.8?×?10-9 mol L-1.  相似文献   

2.
An effective potentiometric sensor had been fabricated for the rapid determination of Pb2+ based on carbon paste electrode consisting of room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), multiwalled carbon nanotubes (MWCNTs), nanosilica, synthesized Schiff base, as an ionophore, and graphite powder. The constructed nanocomposite electrode showed better sensitivity, selectivity, response time, response stability, and lifetime in comparison with typical Pb2+ carbon paste electrode for the successfully determination of Pb2+ ions in water and in waste water samples. The best response for nanocomposite electrode was obtained with electrode composition of 18% ionophore, 20% BMIM-PF6, 49% graphite powder, 10% MWCNT, and 3% nanosilica. The new electrode exhibited a Nernstian response (29.76?±?0.10 mV decade?1) toward Pb2+ ions in the range of 5?×?10?9?C1.0?×?10?1 mol L?1 with a detection limit of 2.51?×?10?9 mol L?1. The potentiometric response of prepared sensor is independent of the pH of test solution in the pH range of 4.5?C8.0. It has quick response with response time of about 6 s. The proposed electrode show fairly good selectivity over some alkali, alkaline earth, transition, and heavy metal ions.  相似文献   

3.
In this study, poly (vinyl chloride)(PVC) membrane electrodes with/without multi-walled carbon nanotubes (MWCNTs) based on a calix[4]arene derivative for perchlorate ion were described. The influence of membrane composition, pH, conditioning solution on the potentiometric response of the electrodes was investigated. Perchlorate-selective PVC membrane electrode exhibited a slope of 47.8 ± 0.6 mV/pClO4 in the range of 1.0 × 10?7–1.0 × 10?1 mol L?1at pH 4.0 while the coated Pt electrodes with MWCNT-OH, MWCNT-COOH and MWCNT displayed slopes of 46.1 ± 0.7 mV/pClO4 (5.0 × 10?6–1.0 × 10?1 mol L?1), 50.4 ± 1.9 mV/pClO4 (1.0 × 10?6–1.0 × 10?1 mol L?1) and 44.4 ± 0.3 mV/pClO4 (1.0 × 10?5–1.0 × 10?1 mol L?1), respectively. Other response characteristics of these electrodes such as response time, lifetime and detection limit were identified, and the selectivity coefficients towards various anions were calculated by separate solution method. Moreover, the perchlorate-selective electrodes described here were successfully used as an indicator electrode for the determination of perchlorate in real samples such as tap water, river water and human urine by direct calibration method.  相似文献   

4.
A low cost and accurate method for the detection and analytical determination of the cortisol in pharmaceutical preparation, blood serum and urine was developed. The method was based upon the enhancement of fluorescence intensity of the band at 424 nm of the photo probe by different cortisol concentrations in acetonitrile at (pH 5.7, λex?=?320 nm). The influence of the different parameters, e.g. pH, solvent, cortisol concentration and foreign ions concentrations that control the enhancement process of fluorescence intensity of the band of photo probe was critically investigated. The remarkable enhancement of the fluorescence intensity at 424 nm in acetonitrile by various concentrations of cortisol was successfully used as a photo- probe for the assessment of cortisol concentration. The calibration plot was achieved over the concentration range 8.0?×?10?6–5.5?×?10?9 mol L?1 cortisol with a correlation coefficient of 0.998 and a detection limit of 4.7?×?10?9 mol L?1. The developed method is simple and proceeds without practical artifacts compared to the other determination methods.  相似文献   

5.
A new fluorescence enhancement phenomenon in the europium(III)–balofloxacin–sodium dodecyl sulfate system was observed when yttrium(III) was added. Based on this, a sensitive cofluorescence assay for the estimation of balofloxacin was established. Under the optimized conditions, the enhanced fluorescence signal was linear over the concentration of balofloxacin ranging from 3.0 × 10?9 to 7.0 × 10?6 mol L?1 with a correlation coefficient of 0.9993. The detection limit (3 σ) was determined as 8.3 × 10?10 mol L?1. The presented method was successfully applied to determination of balofloxacin in pharmaceutical preparations, human serum, and urine. The possible fluorescence enhancement mechanism was also discussed.  相似文献   

6.
A novel fluorescence sensor has been developed and applied for the determination of carbon dioxide released from the biodegradation of polymer materials and for the evaluation of the biodegradability of polymers. The proposed analytical method is based on the extraordinarily quenching effect of carbonate on fluorescence signal of N,N-diphenylthiourea system. Under the optimized experimental conditions, the fluorescence quenching system performed satisfactorily in a linear detection concentration ranging from 2.00 × 10?4 to 9.00 × 10?3 mol L?1 of carbonate. The detection limit is 8.33 × 10?5 mol L?1 for carbonate. This proposed fluorescence system for the selective sensing of carbonate has been successfully applied to determine the biodegradability of polybutylene succinate and related polymers under controlled composting environment with devices assembled in our laboratory. The results exhibited that the biodegradation rate and final biodegradation percentage of biodegradable thermoplastic poly(ester urethane) elastomers, which embodies the block copolymer of poly(butylene succinate) with poly(diethylene glycol succinate), were correlated to the amount of poly(diethylene glycol succinate). In addition, the maximum biodegradation percentage of the testing polymers has reached 45.01%. This research demonstrates the development of chemosensors for rapid, selective, and sensitive detection of carbon dioxide is important and significant for both environmental and biological science.  相似文献   

7.
ABSTRACT

The interaction between metal complex Cu2+–ARS (Alizarin Red S) and l-cysteine was investigated via fluorescence and absorption spectroscopies. In pH 5.2 Britton–Robinson buffer, the addition of L-cysteine into Cu2+–ARS system resulted in a fluorescence enhancement because cysteine reduced Cu2+ to Cu+, which led to Cu2+–ARS decompound, and ARS was released. The result was also supported by absorption spectroscopy change. A good linear response of fluorescence intensity as a function of cysteine concentration was obtained ranging from 1.0 × 10?6 to 4.0 × 10?5 mol L?1 with the detection limit as 1.08 × 10?7 mol L?1. The introduced method has high selectivity over other amino acids such as cystine, tyrosine, tryptophan, methionine, and glycine. It was applied to determine cysteine in protein hydrolysate of fresh pig blood with recovery of 88.4–100.2%.  相似文献   

8.
The electrochemical behaviors of an emerging pollutant, benzotriazole (BTA), at multiwall carbon nanotubes and Nafion modified glassy carbon electrode (MWNTs-Nafion/GCE) were investigated systematically. The electrochemical reduction of BTA was significantly improved by MWNTs-Nafion compared to bare GCE, ascribed to the excellent adsorption capacity and electrocatalytic activity of MWNTs. BTA presented well-defined reduction peaks only at pH <3.0, suggesting the involvement of lots of protons in the reduction process. Peak potential shifted negatively and peak current decreased significantly with pH increase. BTA showed various UV–Vis absorption spectra in acidic and alkaline mediums. Cathodic peak current increased linearly with square root of sweep rate as well as with the concentration of BTA from 3.0?×?10?6 to 1.6?×?10?4 mol L?1. This suggests a diffusion-controlled and irreversible electrode process. Diffusion coefficient of BTA on MWNTs-Nafion/GCE was obtained as 2.67?×?10?2 cm2 s?1 with four orders of magnitude larger than that on GCE. MWNTs-Nafion/GCE showed a good selectivity between BTA and O2 but poor selectivity between BTA and tolyltriazole.  相似文献   

9.
ABSTRACT

In this study the simultaneous molecular spectrofluorometric determination of ultratrace amounts of two dansyl chloride derivatives, DMNPS (5-(dimethylamino)naphthalene-1-sulfonyl 4-phenylsemicarbazide) and DMNPH (2-(5-(dimethylamino)naphthalen-1-ylsulfonyl)-N-phenylhydrazinecarbothioamide), was accomplished using a genetic algorithm joint partial least squares (GA-PLS) technique that leads to very low detection limits (lower than 10?6 mol/L) The linear dynamic ranges of the compounds were 1–6 µ mol L?1 and 1–7 µ mol L?1 for DMNPS and DMNPH, respectively. Quantification was performed using the emission wavelength range from 360 to 600 nm with an optimum calibration sample number of 25 and prediction sample number of 7. The technique was proved to be beneficial.  相似文献   

10.
A novel biosensor has been constructed by incorporating modified nanosized natural zeolite and 3-hydroxypropanaminium acetate (HPAA) as a novel room temperature ionic liquid, supported on multiwalled carbon nanotube (MWCNTs) and employed for the simultaneous determination of dopamine (DA) and uric acid (UA). A detailed investigation by transmission electron microscopy and electrochemistry is performed in order to elucidate the preparation process and properties of the composites. The voltammetric studies using the modified carbon paste electrode show two well-resolved anodic peaks for DA and UA with a potential difference of 160 mV, revealing the possibility of the simultaneous electrochemical detection of these compounds. The modified carbon paste electrode shows good conductivity, stability, and extraction effect due to the synergic action of HPAA, MWCNTs, and iron ion-doped natrolite zeolite. Under optimized conditions, the peak currents are linear from 8.12?×?10?7 to 3.01?×?10?4?mol?L?1 and from 9.31?×?10?7 to 3.36?×?10?4?mol?L?1 with detection limits of 1.16?×?10?7 and 1.33?×?10?7?mol?L?1 for DA and UA using the differential pulse voltammetric method, respectively. Finally, the modified carbon paste electrode proved to have good sensitivity and stability and is successfully applied for the simultaneous determination of DA and UA in human blood serum and urine samples.  相似文献   

11.
A new candidate laser dye based 1,4-bis[β-(2-naphthothisolyl) vinyl] benzene (BNTVB) were prepared, and characterized in various organic solvents. The center polarity is less sensitive than electronic absorption. A red shift was noticed in the fluorescence spectra (ca. 40 nm) with increment in the solvent’s polarity, this means that BNTVB’s polarity appreciates upon excitation. The dipole moment of ground state (μg) and the excited singlet state dipole moment (μe) are determined from Kawski – Chamma and Bakshiev–Viallet equations using the disparity of Stokes shift with solvent polarity function of ε (dielectric constant) and n (refractive index) of the solvent. The result was found to be 0.019D and 5.13D for ground and exited state, in succession. DFT/TD-DFT manners were used to understand the electronic structures and geometric of BNTVB in other solvents. The experimental and theoretical results showed a good agreement. The photochemical quantum yield (Фc) of BNTVB was calculated in variable organic reagents such as Dioxane, CHCl3, EtOH and MeOH at room temperature. The values of φc were calculated as 2.3?×?10?4, 3.3?×?10?3, 9.7?×?10?5 and 6.2?×?10?5 in Dioxane, CHCl3, EtOH and MeOH, respectively. The dye solutions (2?×?10?4 M) in DMF, MeOH and EtOH give laser emission in the blue-green region. The green zone is excited by nitrogen pulse 337.1 nm. The tuning range, gain coefficient (α) and cross – section emission (σe) of laser were also estimated. Excitation energy transfer from BNTVB to rhodamine-6G (R6G) and N,N-bis(2,6-dimethyphenyl)-3,4:9,10-perylenebis-(dicarboximide) (BDP) was also studied in EtOH to increase the laser emission output from R6G and BDP when excited by nitrogen laser. The dye-transfer power laser system (ETDL) obeys the Foster Power Transmission (FERT) mechanism with a critical transmission distance, Ro of 40 and 32 ? and kET equals 2.6?×?1013 and 1.06?×?1013 M?1 s?1 for BNTVB / R6G and BNTVB / BDP pair, respectively.  相似文献   

12.
This work is a continuation of previous studies concerning the behaviour of ferrocene in a mixture of two insoluble liquids. In this paper, the system reached partition equilibrium after approximately 175 min. Electroanalytical studies were executed, and a high reproducibility was observed in a range of concentrations from 2 to 14?×?10?5 mol L?1 of ferrocene that escaped from the oil to the aqueous phase. Because ferrocene most likely occurs only in the monomeric form in both the oil and aqueous phases, it was possible to predict a partition coefficient (log P(oil/water)) of ferrocene of approximately 2.4.  相似文献   

13.
The paper describes a study on the green emission of a Tb-doped Mg-Al layered double hydroxide (Tb-LDH) response to L-lysine (Lys). Fluorescent study was found that the Tb-LDH exhibited strong green emission due to 5D4-7FJ (J = 5, 6) transition of Tb3+, and the green emission almost quenched while the Tb-LDH was exposed to 0.01, 0.05, 0.1, 0.25, and 0.5 mol·L?1 Lys solution, respectively. Meanwhile the emission attributed to Lys markedly increased as the Tb-LDH was exposed to 0.01 and 0.05 mol·L?1 Lys solution, then decreased as the concentration of Lys solution further increased to 0.5 from 0.05 mol·L?1. The green emission of Tb-LDH optimal response to Lys happened at 0.05 mol·L?1 of Lys solution. XRD results revealed that no reflections ascribed to Lys appeared in the composites of Tb-LDH and Lys. IR spectra suggested that the IR spectra of Tb-LDH obviously changed after it was exposed to Lys solution. These results indicated that the green emission of Tb-LDH response to Lys was possibly owing to interaction between the Tb-LDH and Lys. Moreover, this interaction between the Tb-LDH and Lys may be resulted from absorption. The green emission of Tb-LDH response to Lys would be potential application in detecting L-lysine.  相似文献   

14.
In this present work, a fluorescence method for azithromycin (9-deoxo-9a-aza-9a-methyl-9a-homoerythromycin) determination in pharmaceutical formulations is proposed. The method is based on the synchronous fluorescence (Δλ?=?30 nm, 482 nm) produced when azithromycin is derivatized in strong acidic medium (9.0 mol L?1 HCl). The influence of the derivatization conditions (acid concentration, reaction time and temperature) was studied. Also, the possible reaction mechanism was discussed. In the optimized conditions, the method presented a limit of detection of 0.23 mg L?1 and a limit of quantification of 0.76 mg L?1. The developed procedure was successfully applied in the determination of azithromycin in pharmaceutical formulations.  相似文献   

15.
A very sensitive and reversible optical chemical sensor based on a novel tetradentate Schiff base namely N.N/bis(2-aminothiophenol)benzene-1,2-dicarboxaldehyde (ATBD) immobilized within a plasticized PVC film for Hg2+ determination is described. At optimum conditions (i.e. pH 6.0), the proposed sensor displayed a linear response to Hg2+ over 1.0?×?10?10 ? 1.0?×?10?2 mol L?1 with a limit of detection of 7.23?×?10?11 mol L?1 (0.0145 μgL?1). Moreover, the results revealed that, under batch condition, the sensor is fully reversible within a response time?~?35 s. In addition to its high stability and reproducibility, the sensor showed good selectivity towards Hg2+ ion with respect to common metal cations. The sensor was successfully applied for determination of Hg2+ ion in some real samples, including hair, urine and well water samples. The results were in good correlation with the data obtained using cold vapor atomic absorption spectrometry.  相似文献   

16.
The silver ions and l-phenylalanine were co-deposited and formed a hybrid membrane on the surface of glassy carbon electrode by cyclic voltammetry. The membrane had good properties for catalyzing the redox of catecholamine neurotransmitters, including epinephrine (EP), norepinephrine (NE), and dopamine (DA). The electrochemical behaviors of these neurotransmitters were studied on this modified electrode. and therefore, an assay for each of them is set up and the detection limits for EP, NE, and DA are 7.2?×?10?9, 6.4?×?10?9, and 8.5?×?10?9 mol L?1, respectively. The proposed method can effectively eliminate the interference of the ascorbic acid and uric acid. The conditions which influenced the analyses were optimized. Using this method to determine the content of EP, NE, and DA in injections, the results were satisfactory.  相似文献   

17.
The free volume of the microvoids in the polyimide samples, irradiated with 6 MeV electrons, was measured by the positron annihilation technique. The free volume initially decreased the virgin value from ~13.70 to ~10.98 Å3 and then increased to ~18.11 Å3 with increasing the electron fluence, over the range of 5?×?1014 – 5?×?1015 e/cm2. The evolution of gaseous species from the polyimide during electron irradiation was confirmed by the residual gas analysis technique. The polyimide samples irradiated with 6 MeV electrons in AgNO3 solution were studied with the Rutherford back scattering technique. The diffusion of silver in these polyimide samples was observed for fluences >2?×?1015 e/cm2, at which microvoids of size ≥3 Å are produced. Silver atoms did not diffuse in the polyimide samples, which were first irradiated with electrons and then immersed in AgNO3 solution. These results indicate that during electron irradiation, the microvoids with size ≥3 Å were retained in the surface region through which silver atoms of size ~2.88 Å could diffuse into the polyimide. The average depth of diffusion of silver atoms in the polyimide was ~2.5 μm.  相似文献   

18.
ABSTRACT

6-Amino coumarin has been established as an efficient nitrite ion selective fluorescent sensor. The developed method shows linearity up to 1.6 × 10?6 mol L?1 of nitrite ion concentration. Interference from other common anions is almost negligible. The reagent shows strong binding affinity towards nitrite ion as evident from its binding constant value (5.8 × 104), estimated by Stern-Volmer method. Some real samples were analyzed. Single crystal X-ray structure of the reagent is reported. Preliminary computational studies on the molecular level interaction between the reagent and nitrite ion were performed by density functional theory (DFT, B3LYP) method.  相似文献   

19.
The CdSe quantum dots (QDs) capped with 2-mercaptonicotinic acid (H2MN) were prepared through a controllable process at 80 °C. The prepared QDs were characterized by XRD, TEM, IR, UV–Vis and fluorescence (FL) techniques. It was found that the QDs were nearly mono-disperse with the diameters in the range of 8–10 nm. These QDs are capable to exhibit strong FL even in concentrated acidic media. They exhibit an enhanced fluorescence in the presence of Cr(VI), which was used for the determination of Cr(VI) in water samples. The linear range was found to be 1?×?10?7–6.0?×?10?6 M with the RSD and DL of 0.92 % and 5?×?10?8 M, respectively. Except that Ca2+ and Fe3+ which can be eliminated through a simple precipitation process, the other co-existent ions present in natural water were not interfered. The recoveries obtained for the added amounts of Cr(VI) were in the range of 96.9–103.2 %, which denote on application of the method, satisfactorily.  相似文献   

20.
In this article, water-soluble graphene–cadmium telluride quantum dot nanocomposites were fabricated through the synthesis of cadmium telluride quantum dots in the presence of graphene aqueous dispersion. It was found that pyrene could remarkably quench fluorescence of graphene–cadmium telluride quantum dot nanocomposites. On this basis, a novel method for the determination of pyrene was developed. Factors affecting the pyrene detection were investigated, and the optimum conditions were determined. Under the optimum conditions, a linear relationship could be established between the quenching of fluorescence intensity of graphene–cadmium telluride quantum dot nanocomposites and the pyrene concentration in the range of 6.00 × 10?8–2.00 × 10?6 mol L?1 with a correlation coefficient of 0.9959. The detection limit was 4.02 × 10?8 mol L?1. Furthermore, the nanocomposites were applied to practical determination of pyrene in different water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号