共查询到17条相似文献,搜索用时 140 毫秒
1.
2.
夹芯结构具有优良的力学性能和多功能性,是一类良好的冲击防护材料。以编织玻璃纤维增强聚丙烯复合材料蜂窝夹芯板为研究对象,采用JSL-3000落锤式示波冲击试验机研究了其结构在低速冲击下的抗冲击特性。试验采用固支的边界条件,通过控制落锤下落高度实现不同冲击能量对结构低速冲击响应的影响;并在相同的冲击能量下,研究了蜂窝夹芯结构芯层高度和芯层层数对结构抗冲击性能的影响。利用ABAQUS有限元软件建立了蜂窝夹芯板的低速冲击模型与试验结果进行对比,通过对获得的载荷时间曲线和结构失效模式的分析,发现结构的损伤以上面板的凹陷和芯层的压溃为主,在面板未发生穿透的情况下结构会发生大幅度回弹。 相似文献
3.
通过三维动力学有限元建立了复合材料蜂窝夹芯板在低速冲击作用下的渐进损伤分析模型。该模型中将蜂窝夹芯等效为均匀的正交各项异性材料。采用基于应变的Hashin三维失效准则和Yeh分层失效准则对面板损伤进行判断。使用部分刚度折减对损伤材料性能进行退化。利用用户子程序将损伤判据和刚度折减方案引入到ABAQUS软件中。模拟了复合材料蜂窝夹芯板低速冲击损伤渐进过程,并与试验结果进行验证。证明了该方法的合理性,最后讨论了各种参数对冲击响应和冲击损伤的影响。 相似文献
4.
蜂窝夹芯板因其较好的吸能效果得到广泛应用。蜂窝夹芯板在服役期间常会受到多次冲击,受损蜂窝夹芯板的剩余强度为其能否继续服役提供有效的参考。为研究蜂窝夹芯板多次低速冲击及冲击后蜂窝夹芯板的剩余强度,对蜂窝夹芯板同一位置进行不同能量、不同频次冲击的实验研究,实验表明,相同冲击总能量下,单次高能量冲击比多次低能量冲击所产生的损伤大。采用ABAQUS软件对冲击实验进行仿真计算,将计算结果与实验结果进行对比,结果表明,仿真计算的接触力最大值与实验的接触力最大值较为接近。对含损伤的蜂窝夹芯板进行了压缩剩余强度实验,结合数字图像相关方法同时对蜂窝板两侧凹坑附近的应变进行测量,结果表明,单次高能量冲击的剩余强度比多次低能量冲击的剩余强度低,在压缩过程中,凹坑处应变变化较明显,远离凹坑处的应变变化较小。 相似文献
5.
泡沫铝芯夹心板的制备及泡沫孔的研究 总被引:2,自引:0,他引:2
提出粉末致密化方法:将粉末放在待连接的两金属板之间进行轧制连接,然后直接在炉中进行发泡的方法·这种方法既克服了粘结剂连接的缺点,达到了冶金结合的目的;又使工艺过程缩短,节约了能源·对泡沫孔的形貌特征进行了研究,并对孔壁上钛的富集和皱褶进行了分析·研究表明,采用粉末与钢板轧制工艺可以成功地制备出钢面板泡沫铝夹心结构;发泡过程中孔的合并以及微孔的产生是影响孔结构的重要因素;钛颗粒在孔壁上的富集对孔的稳定性起到了一定的积极作用;凝固过程中孔壁上产生了弯曲和皱褶现象,所以对凝固过程的控制也是很重要的· 相似文献
6.
利用有限元软件ANSYS中的LS-DYNA模块,建立起了泡沫金属胞元方孔模型,采用能更好反应实际情况的幂函数塑性模型,研究了冲击速度对泡沫金属冲击动力学性能的影响,对泡沫金属在冲击载荷作用下的应力传递和分布以及变形过程进行了数值模拟,分析了冲击速度对泡沫金属应力传递和分布以及变形的影响。研究表明,随着初始撞击速度的提高,泡沫铝屈服强度有所提高,应力传递速度和接触端面处的泡孔变形速度加快。 相似文献
7.
针对某型飞机上应用的Nomex蜂窝夹芯板,通过冲击损伤试验,研究了蜂窝夹芯板厚度对其抗冲击损伤能力的影响、试件损伤面积与冲击能量之间的关系以及穿透损伤对夹芯板轴压承载性能的影响。结果表明:20 mm与8 mm厚度板在分别承受40 J与25 J冲击能量时出现穿透损伤,厚板比薄板具有更高的抗冲击损伤能力;相同冲击能量时,20 mm厚板损伤面积比8 mm板的小;随冲击能量的增大,两种板的损伤面积逐渐增大;当冲击能量超过一定值时,8 mm板损伤面积增速明显加快;20 mm蜂窝夹芯板冲击后的剩余强度为完好件的56.7%,8 mm蜂窝夹芯板冲击后的剩余强度为完好件的67.5%。 相似文献
8.
以四边固支铝基蜂窝夹芯板为研究对象,针对蜂窝夹芯板胞元中添加颗粒的位置及填充量对动力学响应的影响进行了Ansys数值模拟计算,并比较了不同条件下的蜂窝夹芯板应力应变值.结果表明:在冲击载荷下,蜂窝夹芯板胞元中添加颗粒后能很好地减小应力应变值,增大蜂窝夹芯板的吸能效果.颗粒填充范围为0.2~0.25,颗粒填充数为两粒时,蜂窝夹芯板的应力应变值最小,吸能效果最佳,过多的填充不仅不具有更好的吸能效果,反而会激振蜂窝夹芯板. 相似文献
9.
《华中科技大学学报(自然科学版)》2016,(1):98-102
为考查芯材拼接对舰船复合材料天线罩夹芯板力学性能的影响,设计系列试验对比研究芯材拼接对夹芯板的极限承载能力、复杂稳定性和破坏模型的影响.结果发现:芯材拼接主要影响结构的破坏模式和破坏载荷;极限承载试验中芯材拼接易诱发分层破坏,进而导致蒙皮拉伸断裂,且使承载极限降低11.5%;复杂稳定性试验的主要破坏模式为贯穿型和局部型蒙皮压缩破坏,芯材拼接对破坏模式的影响表现为破坏位置的差异,且复杂屈曲载荷降低28.6%;工艺的复杂化使夹芯板力学性能的离散性升高. 相似文献
10.
空心及PMI泡沫填充铝波纹夹芯梁冲击性能实验研究 总被引:2,自引:0,他引:2
为了提高油罐车罐体在冲击载荷下的强度和耐撞性,提出了两种三明治结构:空心和PMI泡沫填充率波纹夹心结构,来代替传统的均质结构,通过泡沫块冲击实验,对两种构型的三明治夹芯梁的冲击性能进行了研究。通过高速摄影观察了夹芯梁的变形过程,得出了在不同冲击速度下同质量不同芯体结构的夹芯梁后面板所产生位移的时程曲线,考察了两种类型夹芯梁在冲击载荷下的后面板中点位移及各自的变形特点。实验结果表明:空心波纹夹芯梁在速度较高的冲击载荷作用下,前面板在冲击区域发生撕裂,波纹芯体发生较大幅度的压缩;相对于空心夹芯梁,PMI泡沫填充夹芯梁前面板的撕裂和芯体的压缩程度大幅减小,但后面板中点位移较空心夹芯梁更大。由于结构的撕裂在罐车的行进过程中容易扩展并至更严重的破坏,因而填充夹芯结构相对空心结构更具优势。 相似文献
11.
实验研究了泡沫铝夹芯梁结构在不同温度下的3点弯曲力学性能.通过引入Gibson模型构建夹芯梁架构在3点弯曲作用下的失效模式图,并将失效模式图扩展到高温情况下,得到泡沫铝夹芯梁的初始失效模式图随温度的变化趋势.结果发现,其他因素不变,随着温度的升高,夹芯梁结构更容易发生面板屈服失效模式,芯层剪切模式涉及的范围被大大压缩.根据修正的Gibson模型预测的夹芯梁结构的极限载荷和实验结果所得极限载荷比较发现,芯层剪切模式分析结果和实验数据很好地吻合,说明泡沫铝夹芯梁的最终失效破坏主要是由于芯层剪切引起的. 相似文献
12.
以空气雾化的A1Si12合金粉、镁粉和氢化钛粉末为原料,采用包套轧制法成功制备出了泡沫铝三明治板材.利用300 dpi扫描仪、扫描电镜(SEM)和显微硬度仪等检测方法系统比较了复合轧制和包套轧制方法对制备前驱体的宏观形貌和界面结合及其泡孔结构的影响,结果表明:包套轧制可以有效阻止面板材料裂纹的扩展,获得完整的和致密度均... 相似文献
13.
对采用轧制复合法制备的发泡预制坯的粉末冶金发泡过程进行了研究,确定了制得的泡沫铝夹心板的组织及物相,分析了发泡剂TiH2颗粒尺寸及团聚对发泡效果的影响.研究结果表明:轧制坯充分发泡后,泡壁主要有Al3.21Si0.47,Ti及Ti3O相,Ti和Ti3O颗粒同泡壁结合紧密;预制坯内大尺寸发泡剂TiH2颗粒的周围易形成微裂纹,发泡时裂纹的宽度可扩展至100μm以上,裂纹周围的泡孔发育不良;混料及轧制阶段形成的TiH2团聚导致局部发泡驱动力过大,发泡后芯层内易形成大尺寸泡孔. 相似文献
14.
在保证飞机机翼前缘质量特性的前提下,通过一种泡沫铝局部填充机翼前缘的优化结构来提高机翼前缘的抗鸟撞性能。通过LS-DYNA软件分别开展机翼前缘未填充和局部填充泡沫铝材料抗鸟撞分析,研究两者撞击响应、前墙响应和吸能特性的差异性,并基于D80气炮开展鸟撞铝板试验来验证鸟体本构参数的准确性和有效性。研究结果表明:通过减少蒙皮厚度并局部填充泡沫铝的方式能够在优化机翼前缘质量的同时有效地增强机翼前缘的抗冲击强度;机翼前缘局部填充泡沫铝之后前墙面板中心点位移以及等效应力得到有效降低,填充机翼前缘结构比空机翼前缘结构能够更有效地抵御鸟体撞击;在蒙皮和泡沫铝的共同作用下,局部填充泡沫铝的机翼前缘能够比空机翼前缘在相同撞击工况下吸收更多的能量。 相似文献
15.
多轴向经编增强复合材料低速冲击下能量吸收特性的研究 总被引:7,自引:0,他引:7
从多轴向经编增强结构本身的特点出发,利用我们自己建立的一套落锤冲击试验装置,对玻璃纤维/DTY多轴向经编增强玻璃纤维/环氧树脂复合材料板进行了低速低能量的冲击试验研究。通过传感器技术及其相应的信号处理装置记录落锤冲击试验过程中速度随时间变化曲线,直接计算冲击动能和材料所吸收的冲击能量,通过数学处理得到各种冲击试样的能量吸收系数,对多轴向经编结构复合材料的冲击失效过程和影响能量吸收特性的因素进行试验研究和分析。 相似文献
16.
为研究铝蜂窝夹芯三明治结构的弹道防护特性,设计并实施了一系列速度在100~250 m/s之间的弹道冲击实验. 研究了在不同冲击速度、面板厚度、芯层密度和弹丸头部形状等条件下,该结构的能量吸收特性和弹道极限. 结果表明,铝蜂窝夹芯能有效提高三明治板的抗弹能力,并且对高速弹丸防护能力的提高作用更加显著. 在弹速相同的条件下,结构对平头弹丸的能量吸收低于圆头和尖头弹丸. 相似文献
17.
文中通过理论和数值模拟研究了多胞金属在中低速冲击下的防护应力,发现防护应力在冲击过程中出现周期性卸载,这是由于弹性波在支撑端的反射所致. 结果发现与高速冲击情况不同,在中低速冲击下,蜂窝的平均防护应力会随着冲击速度的减小而增大;该现象可以用微结构的惯性效应来解释,此时若采用蜂窝的塑性坍塌应力将高估其防护应力. 最后给出了金属蜂窝在中低速冲击下防护应力的表达式,与数值计算结果吻合良好. 相似文献