首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A heat transfer problem is solved, first for an infinitely long heated cylinder and then for a small heated sphere, each freely suspended in a general linear flow at Reynolds numbers Re ? 1. Asymptotic solutions to the convection problem are developed for very large values of the Péclet number Pe, and expressions are obtained for the asymptotic Nusselt number for two-dimensional flows ranging from solid body rotation to hyperbolic flow. Since the objects in these cases are surrounded by a region of effectively isothermal closed streamlines, the asymptotic Nusselt number becomes independent of the Péclet number in the limit Pe → ∞.  相似文献   

2.
The origination of detached separation is studied on the basis of a numerical solution of the full Navier–Stokes equations. Fluxes of vorticity with different signs generated with twice the frequency of cylinder oscillation move from the cylinder to the outer surface of a detached liquid layer in the form of concentric rings. Near the critical layer between the attached layer and the main flow these rings are torn and crimped to the regions of separated vortices of the corresponding sign. The form of detached separated vortices is similar to that of vortices originating from a stationary circular cylinder in a uniform flow. Transition of the flow to a non-symmetric form with Karman vortex street generation at a Reynolds number (based on the radius) greater than 17 is revealed. This critical Reynolds number is smaller than that for a stationary circular cylinder in a viscous stream (where Re=20 has been determined to be a critical value) and corresponds to the Reynolds number extrapolated from the critical value for the stationary cylinder by increasing the cylinder radius by the attached layer thickness. The vorticity flux from the cylinder surface immediately into the separation region decreases as the frequency of cylinder oscillation increases. Violation of the flow potentiality in the detached separation region is the main cause of the vorticity generation on the outer surface of the attached liquid layer. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Numerical simulation of the flow of upper convected Maxwell fluid through a planar 4:1 contraction has been performed using type dependent difference approximation of the vorticity equation. For creeping flow assumption, the numerical convergence has been achieved up to much higher values of the elasticity parameter than those obtained by conventional finite difference methods. For non-vanishing Reynolds number flow, it is shown that the corner vortices disappear, which is in good qualitative agreement with existing experimental results. In doing so, spatial distributions of stream function, vorticity and stresses are considered in relation to a change of type of vorticity.  相似文献   

4.
The two-dimensional and unsteady free stream flow of power law fluids past a long square cylinder has been investigated numerically in the range of conditions 60≤Re≤160 and 0.5≤n≤2.0. Over this range of Reynolds numbers, the flow is periodic in time. A semi-explicit finite volume method has been used on a non-uniform collocated grid arrangement to solve the governing equations. The global quantities such as drag coefficients, Strouhal number and the detailed kinematic variables like stream function, vorticity and so on, have been obtained for the above range of conditions. While, over this range of Reynolds number, the flow is known to be periodic in time for Newtonian fluids, a pseudo-periodic flow regime displaying more than one dominant frequency in the lift is observed for shear-thinning fluids. This seems to occur at Reynolds numbers of 120 and 140 for n=0.5 and 0.6, respectively. Broadly speaking, the smaller the value of the power law index, lower is the Reynolds number of the onset of the pseudo-periodic regime. This work is concerned only with the fully periodic regime and, therefore, the range of Reynolds numbers studied varies with the value of the power law index. Not withstanding this aspect, in particular here, the effects of Reynolds number and of the power law index have been elucidated in the unsteady laminar flow regime. The leading edge separation in shear-thinning fluids produces an increase in drag values with the increasing Reynolds number, while shear-thickening fluid behaviour delays this separation and shows the lowering of the drag coefficient with the Reynolds number. Also, the preliminary results suggest the transition from the steady to unsteady flow conditions to occur at lower Reynolds numbers in shear-thinning fluids than that in Newtonian fluids.  相似文献   

5.
Solutions for the slow flow past a square and a hexagonal array of cylinders are determined using a somewhat non-conventional numerical method. The calculated values of the drag on a cylinder as a function of c, the volume fraction of the cylinders, are shown to be in excellent agreement with the corresponding asymptotic expressions for c ? 1 and for c → cmax, the maximum volume fraction. These solutions are then used to calculate the average temperature difference between the bulk and the cylinders which are heated uniformly under conditions of small Reynolds and Péclet numbers.  相似文献   

6.
The numerical study of the flow past a circular cylinder forced to oscillate transversely to the incident stream is presented herein, at a fixed Reynolds number equal to 106. The finite element technique was favoured for the solution of the Navier–Stokes equations, in the formulation where the stream function and the vorticity are the field variables. The cylinder oscillation frequency ranged between 0·80 and 1·20 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 50% of the cylinder diameter. Since the resolution of the characteristics of synchronized wakes is the focus of the study, the first task is the determination of the boundary of the lock-in region. The computation revealed that, when the cylinder oscillation frequency exceeds the frequency of the natural shedding of vortices, the flow is not absolutely periodic at subsequent cycles but a quasiperiodic flow pattern occurs, which creates difficulty in the determination of the lock-in boundary. The time histories of the drag and lift forces for various oscillation parameters are presented, while the vorticity contours were favoured for the numerical flow visualization. The hydrodynamic forces, the phase angle between the lift force and the cylinder displacement, and the parameters of the wake geometry when steady state was reached, are presented in cumulative diagrams. These diagrams indicate the effect of the oscillation parameters on the hydrodynamic forces and on the wake geometry.  相似文献   

7.
Vortical structure identification has more recently been applied in the study of the transport of vortical structures in low Reynolds number three-dimensional complex geometry flows. An important issue in this identification procedure is to choose an appropriate cut-off value λ2 which takes into consideration the finite precision vortex interfaces. This cut-off choice is studied in this Note and applied to an external flow around a curved cylinder. The vortex identification technique at different cut-off values is compared to the threshold of the vorticity field showing the efficiency of choosing the optimal tolerance gap. The computations are performed with a fully three-dimensional spectral/hp element method. To cite this article: A. Miliou et al., C. R. Mecanique 333 (2005).  相似文献   

8.
The surface vorticity method (SVM), which is a fast and practical grid-free two-dimensional (2-D) method, and a fluid–structure interaction model incorporating the effects of cylinder motions and displacements is used to simulate the vortex-induced vibration of cylinder arrays at sub-critical Reynolds number Re=2.67×104. The SVM is found to be most suitable for simulating a 2-D cylinder row with large-amplitude vibrations where the vorticity field and the fluid forces of the cylinder row change drastically, and the effect of the stream on the transverse direction vibration is very significant. The fluidelastic instability of a flexible cylinder row at small pitch ratio is also investigated, and the critical reduced velocity of the cylinder row at a reduced damping parameter SG=1.29 is calculated, which is in good agreement with experimental and analytical results of the unsteady model. Vortex-induced vibration of a staggered cylinder array is simulated using different structural parameters. When the cylinders are relatively more flexible, the flow pattern changes dramatically and the fluid–structure interaction has a dominant impact on the flow field. Compared with grid-based methods, the grid-free SVM is a fast and practical method for the simulation of the FIV of cylinder arrays due to vortex shedding at sub-critical Reynolds numbers.  相似文献   

9.
The wake vortical structures of a square cylinder at different yaw angles to the incoming flow (α=0°, 15°, 30° and 45°) are studied using a one-dimensional (1D) hot-wire vorticity probe at a Reynolds number (Re) of about 3600. The results are compared with those obtained in a yawed circular cylinder wake. The Strouhal number (StN) as well as the mean drag coefficient (CDN), normalized by the velocity component normal to the cylinder axis, follow the independent principle (IP) satisfactorily up to α=40°. Using the phase-averaging analysis, both the coherent and the remaining contributions of velocity and vorticity are quantified. The flow patterns of the coherent spanwise vorticity (ωz) display obvious Kármán vortex streets and their maximum concentrations decrease as α increases. Similar phenomena are also shown in the coherent contours of the streamwise (u) and transverse (v) velocities as well as the Reynolds shear stress (uv). The contours of the spanwise velocity (w) and Reynolds shear stress (uw), however, experience an increasing trend for the maximum concentrations with increasing yaw angle. These results indicate an enhancement of the three-dimensionality of the wake and the reduction of vortex shedding strength as α increases. While general similarities to the wake behind a yawed circular cylinder are found in terms of flow features, some differences between the two wakes at different yaw angles are highlighted.  相似文献   

10.
A method of solution for the two-dimensional Navier-Stokes equations for incompressible flow past a cylinder is given in which the euquation of continuity is solved by a step-by-step integration procedure at each stage of an interative process. Thus the formulation involves the solution of one first-order and one second-order equation for the velocity components, together with the vorticity transport equation. the equations are solved numerically by h4-accurate methods in the case of steady flow past a circular cylinder in the Reynolds number range 10–100. Results are in satisfactory agreement with recent h4-accurate calculations. An improved approximation to the boundary conditions at large distance is also considered.  相似文献   

11.
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing quantitatively the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number considered, based on the cylinder diameter and steady free stream speed, is Re=200, while the non-dimensional rotation rate (ratio of the surface speed and free stream speed) selected was α=1 and 3. For α=1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α=3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. We characterize quantitatively the contributions of individual fluid elements (vortices) to aerodynamic forces, explaining and quantifying the mechanisms by which the lift is generated in each case. In particular, for high rotation (when α=3), we explain the relation between the mechanisms of vortex shedding suppression and those by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached.  相似文献   

12.
The flow around a circular cylinder with a cross-section variation is experimentally investigated. Particle Image Velocimetry (PIV) is used to scrutinize the interaction of the cylinder’s wall with its near wake. The Reynolds number based on the cylinder’s diameter and freestream velocity is 80 × 103, corresponding to the upper subcritical flow regime. At a forcing Strouhal number of St f = 0.02, the maximum vorticity level around the cylinder is reduced by more than 50% as compared to its uncontrolled value. The topology of the bulk flow confined between the primary vortical structure and the cylinder surface is modified resulting in substantial drag reduction.  相似文献   

13.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

14.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

15.
The detailed flow structure behind an impulsively started circular cylinder has been investigated experimentally. The Reynolds number based on the steady state velocity and the diameter of the cylinder was 500 to 3,000. This work is unique in that unsteady spatial velocities were measured simultaneously by a quantitative visualization technique — Laser Induced Photochemical Anemometry (LIPA). The surface vorticity at g/q = π/2 and vorticity distribution behind the cylinder in the Lagrangian coordinates (i.e. coordinates fixed on the cylinder) were calculated from the measured velocities. The surface vorticity shows in the early stage of flow development a close agreement with the previous results obtained by analytical and numerical approaches. The large-field velocity and vorticity information provides an insight into the formation process of the vortices downstream of the cylinder. In addition to the quantitative information, the results of visualized flow pattern obtained by LIPA technique are also presented. A preliminary version of this paper was presented at the Twelfth Symposium on Turbulence, University of Missouri-Rolla, Sept. 24–26, 1990  相似文献   

16.
A method for monitoring time-varying local film thickness variation through the detection of laser scattering from suspended latex particles is briefly described. This method was used in conjunction with the Jeffreys theory of drainage from a flat plate to determine time-average local film thickness.Measurements were made at Reynolds numbers (equal to (4Q/ν)) from 145 to 4030 at varying distances along the direction of flow. At the bottom of the flow, 134 cm from the top, average film thickness is given by the expression: h ≈ a1Reni where ai and ni are constants unique to each of the three Reynolds number regions, wavy laminar, transitional and turbulent.  相似文献   

17.
The effect of Reynolds number on a turbulent far-wake   总被引:1,自引:0,他引:1  
The turbulent far-waked generated by a circular cylinder is investigated for two values (1350 and 4600) of the Reynolds number Re θ (based on the free stream velocity and the momentum thickness). Two arrays of sixteen X-wires, eight in the (x,?y)-plane and eight in the (x,?z)-plane, are used to capture the main features of the large-scale motion in two orthogonal planes. Both the magnitude of the measured Reynolds stresses and the size of the two-point velocity and vorticity correlation contours increase with Reynolds number. The probability density function and spectra of the velocity signals also exhibit differences with Re θ. A comparison of centerline turbulence intensities with those in the literature suggests that the Reynolds number dependence may disappear for Re θ?5000.  相似文献   

18.
The three-dimensional transition to turbulence in flows around bodies of non-rectangular configuration has been analysed physically by performing direct numerical simulation to solve the system of Navier-Stokes equations. The successive stages of 3D transition, beyond the first bifurcation, have been detected first in the incompressible regime, for a circular cylinder configuration. The generation of streamwise vorticity, organised according to spanwise periodic cells has been associated with the development of large-scale coherent spanwise undulations of the originally rectilinear (nominally 2D) alternating vortex rows. The wavelengths of these undulations have been determined as a function of Reynolds number. As this parameter increases, a further inherent change of the flow transition is obtained and analysed, the natural vortex dislocations pattern. Beyond this change, the increase of Reynolds number yields an abrupt shortening of the spanwise wavelength and the flow undergoes another transition step, whose critical Reynolds number is evaluated by the present DNS approach in association with the Ginzburg-Landau model. Therefore, the linear and non-linear parts of the flow transition have been quantified by means of the amplitude evolution versus time obtained by the present DNS, in conjunction with the mentioned global oscillator model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The flow fields in the neighbourhoods of series vascular stenoses are studied numerically for the Reynolds numbers from 100 to 4000, diameter constriction ratios of 0.2–0.6 and spacing ratios of 1, 2, 3, 4 and ∞. In this study, it has been further verified that in the laminar flow region, the numerical predictions by kω turbulence model matched those by the laminar‐flow modelling very well. This suggests that the kω turbulence model is capable of the prediction of the laminar flow as well as the prediction of the turbulent stenotic flow with good accuracy. The extent of the spreading of the recirculation region from the first stenosis and its effects on the flow field downstream of the second stenosis depend on the stenosis spacing ratio, constriction ratio and the Reynolds number. For c1 = 0.5 with c2c1, the peak value of wall vorticity generated by the second stenosis is always less than that generated by the first stenosis. However, the maximum centreline velocity and turbulence intensity at the second stenosis are higher than those at the first stenosis. In contrast, for c1 = 0.5 with c2 = 0.6, the maximum values at the second stenosis are much higher than those at the first stenosis whether for centreline velocity and turbulence intensity or for wall vorticity. The peak values of the wall vorticity and the centreline disturbance intensity both grow up with the Reynolds number increasing. The present study shows that the more stenoses can result in a lower critical Reynolds number that means an earlier occurrence of turbulence for the stenotic flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A diffuse approximation based collocation method is used for the study of the flow over a half-circular cylinder. We give some results on the instationary wake at a Reynolds number Re=65. To cite this article: T. Sophy et al., C. R. Mecanique 330 (2002) 193–198.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号