首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Dunaliella chloroplasts were fractionated according to C. Arntzen et al, Biochim. Biophys. Acta 256 , 85–107, 1972. The initial French-press treatment and differential centrifugation produced Fraction 1 (Fr 1) enriched in photosystem I activity and a heavier Fraction 2 (Fr 2). When Fr 2 was treated with digitonin followed by either gradient or differential centrifugation, two more fractions were recovered: Fr 1 g with a photosystem 1 activity similar to that of Fr 1, and Fr 2 g with very low photosystem II activity. Photosystem II activity was considerably lower in these Dunaliella chloroplasts and fractions than in spinach particles measured under the same conditions, but the relative activities between the fractions were similar to those for spinach. Fr 2 always had greater photosystem II activity than Fr 1, but the digitonin fractions were low and similar in photosystem II activity. Photosystem II activity was measured as the reduction of 2, 6–dichlorophenol indophenol (DCIP) with H2O, diphenylcarbazide (DPC) or Mn2+ as electron donor. The results indicated that exogenous manganous ion competed with H2O as an electron donor to photosystem II in broken chloroplasts initially, but after 10–15 s of illumination, the Mn3+ formed began to reoxidize DCIP and a cyclic reaction ensued. DPC and Mn2+ appeared to react at different sites. Computer-assisted curve analysis of the absorption spectrum of each fraction revealed four major component curves representing the absorbing forms of chlorophyll a at 663, 670, 679 and 684 nm seen in numerous other in vivo chlorophyll spectra (C. S. French et al., Plant Physiol. 49 , 421–429, 1972). However, Fr 2g had approx. 20 percent more of Ca663 and Ca670 and 10% more absorption by chl b than Fr 1 which correlated with the difference in photosystem II activity. On the long wavelength side, Fr 2 g had no Ca694 and almost no photosystem I activity. The results are not sufficient to answer the question of whether the photosystem I particle obtained from the original homogenate is significantly similar to or different from the corresponding fraction obtained from Fr 2 with digitonin.  相似文献   

2.
Abstract— Growing wheat seedlings in the presence of BASF 13.338 [4-chloro-5-dimethylamino-2-phenyl-3(2H)pyridazinone], a PS II inhibitor of the pyridazinone group, brought about notable changes in the structure and functioning of photosynthetic apparatus. In BASF 13.338 treated plants, there was a decrease in the ratio of Chi a/Chl b, an increase in xanthophyll/carotene ratio and an increase in the content of Cyt b 559 (HP + LP). Chl/p700 ratio increased when measured with the isolated chloroplasts but not with the isolated PS I particles of the treated plants. The SDS-PAGE pattern of chloroplast preparations showed an increase in the CPII/CP I ratio. The F685/F740 ratio in the emission spectrum of chloroplasts at -196°C increased. The difference absorption spectrum of chloroplasts between the control and the treated plants showed a relative increase of a chlorophyll component with a peak absorption at 676 nm and a relative decrease of a chlorophyll component with a peak absorption at 692 nm for the treated plants. The excitation spectra of these chloroplast preparations were similar. Chloroplasts from the treated plants exhibited a greater degree of grana stacking as measured by the chlorophyll content in the 10 K pellet. The rate of electron transfer through photosystem II at saturating light intensity in chloroplast thylakoids isolated from the treated plants increased (by 50%) optimally at treatment of 125 μM BASF 13.338 as compared to the control. This increase was accompanied by an increase in (a) I50 value of DCMU inhibition of photosystem II electron transfer; (b) the relative quantum yield of photosystem II electron transfer; (c) the magnitude of C550 absorbance change; and (d) the rate of carotenoid photobleaching. These observations were interpreted in terms of preferential synthesis of photosystem II in the treated plants. The rate of electron transfer through photosystems I and through the whole chain (H2O → methyl viologen) also increased, due to an additional effect of BASF 13.338, namely, an increase in the rate of electron transfer through the rate limiting step (between plastoquinol and cytochrome f). This was linked to an enhanced level of functional cytochrome f. The increase in the overall rate of electron transfer occurred in spite of a decrease in the content of photosystem I relative to photosystem II. Treatment with higher concentrations (> 125 μM) of BASF 13.338 caused a further increase in the level of cytochrome f, but the rate of electron transfer was no greater than in the control. This was due to an inhibition of electron transfer at several sites in the chain.  相似文献   

3.
Abstract— The degree of polarization of chlorophyll- a (Chl- a ) fluorescence is known to monitor the extent of excitation migration and/or the orientation of the photosynthetic pigment molecules. We report here the effects of cations, at room temperature, on the degree of polarization of Chl- a fluorescence, and fluorescence intensity in thylakoids as a function of excitation wavelength. Observations of maxima at 650 and 675 nm in the cation-induced changes in the excitation spectrum for fluorescence at 730 and 762 nm, and, in the action spectra for the depolarization of fluorescence lead us to suggest that the regulation of the initial distribution of excitation to photosystem II involves the better coupling of Chl- b and- a in the light harvesting complex with Chl- a in the reaction center II complex.  相似文献   

4.
New bis(dipyrrinato)zinc(II) complex micro‐ and nanosheets containing zinc(II) porphyrin ( N2 ) are synthesized. A liquid/liquid interface method between dipyrrin porphyrin ligand L2 and zinc acetate produces N2 with a large domain size. N2 can be layered quantitatively onto a flat substrate by a modified Langmuir–Schäfer method. N2 deposited on a SnO2 electrode functions as a photoanode for a photoelectric conversion system. The photoresponse of N2 covers the whole visible wavelength range (400–650 nm), with a maximum quantum efficiency of more than twice that of a bis(dipyrrinato)zinc(II) complex nanosheet without porphyrin.  相似文献   

5.
Abstract— Allophycocyanin from dissociated phycobilisomes of Nostoc sp. occurs in three spectrally identifiable forms that fractionate on calcium phosphate adsorption chromatography as: allophycocyanin (APC) I (15–20%), APC II (4&50%), and APC III (30–40%). APC I has a single absorption maximum at 654 nm, and a fluorescence emission peak at 678 nm. The absorption peaks of APC II and III are both at 650 nm, but the relative absorbance at 620/650 nm of APC III is less than that of APC II. The emission of both is maximum at 660 nm. On zone sedimentation in sucrose, their S20,w values of 6.0 ± 0.1 (APC I), 5.0 ± 0.1 (APC II), and 5.3 ± 0.2 (APC III) were comparable to the order of their elution from Sephadex G-200. On SDS acrylamide gel electrophoresis two subunits were resolved with apparent molecular weights of 16,900 and 18,400 daltons. When stained by Coomassie blue, they were present in a ratio of 1α:1β in APC II and III, and a probable ratio of 2a:3β in APC I. The larger size of APC I may be accounted for by additional β subunits, by the presence of an additional polypeptide of 35,000 daltons, or both. Over several days, bleaching as noted by a decrease in absorbance at 650 nm, occurred in all three forms; in addition, the more pronounced bleaching at 650 nm, relative to 620 nm, results in APC III becoming spectrally identical to APC II. A trace of a fourth pigment, probably comparable to allophycocyanin-B, was occasionally detected. The results suggest that several in vitro APC forms (sharing similar subunits) arise upon phycobilisome dissociation, and that APC I is the form most closely related to the final fluorescence emitter of intact phycobilisomes. In this form it probably serves as the bridging pigment in energy transfer from the phycobilisomes to chlorophyll.  相似文献   

6.
Single-photon timing measurements on flowing samples of Chlorella vulgaris and Chlamydomonas reinhardtii at low excitation intensities at room temperature indicate two main kinetic components of the fluorescence at open reaction centers (F0) of photosystem II with lifetimes of approx. 130 and 500 ps and relative yields of about 30 and 70%. Closing the reaction centers progressively by preincubation of the algae with increasing concentrations of 3-(3′,4′-dichlorophenyl)-l,l-dimethylurea (DCMU) and hydroxylamine gave rise to a slow component with a lifetime increasing from 1.4 to 2.2 ns (Fmax) The yield of the slow component increased to 65-68% of the total fluorescence yield in parallel to a decrease in the yield of the fast component to a value close to zero at the fmax-level. The 130 ps lifetime of the fast component remained unchanged. The middle component showed an increase of its lifetime from 500 to 1100 ps and of its yield by a factor of 1.5. Spacing of the ps laser pulses by 12 μs allowed us to resolve a new long-lived fluorescence component of very small amplitude which is ascribed to a small amount of chlorophyll not connected to functional antennae. The opposite dependence of the yield of the fast and the slow component on the state of the reaction centers at almost constant lifetimes is consistent with a mechanism of energy conversion in largely separately functioning photosystem II units. Yields and lifetimes of these two components are in agreement with the high quantum yield of photosynthesis. The lower lifetime limit of 1.4 ns of the slow component is assigned to the average transfer time of an excited state from a closed to a neighboring open reaction center and the increase in the lifetime to 2.2 ns is evidence for a limited energy transfer between photosystems II. Relative effects of changing the excitation wavelength from 630 to 652 nm on the relative fluorescence yields of the kinetic components were studied at the fluorescence wavelengths 682, 703 and 730 nm. Our data indicate that (i) the middle component has its fluorescence maximum at shorter wavelength than the fast component and (ii) that the antennae chlorophylls giving rise to the middle component are preferentially excited by 652 nm light. It is concluded that the middle component originates from the light-harvesting chlorophyll alb protein complexes and the major portion of the fast component from the chlorophyll a antennae of open photosystem II reaction centers.  相似文献   

7.
Abstract— The chlorophyll a fluorescence properties of Gonyaulax polyedra cells before and after transfer from a lightdark cycle (LD) to constant dim light (LL) were investigated. The latter display a faster fluorescence transient from the level ‘I’ (intermediary peak) to ‘D’ (dip) to ‘P’ (peak) than the former (3 s as compared to 10 s), and a different pattern of decline in fluorescence from ‘I’ to ‘D’ and from ‘P’ to the steady state level with no clearly separable second wave of slow fluorescence change, referred to as ‘s' (quasi steady state)→‘M’ (maximum) →‘T’ (terminal steady state). The above differences are constant features of cells in LD and LL, and are not dependent on the time of day. They are interpreted as evidence for a greater ratio of photosystem II/photosystem I activity in cells in LL. After an initial photoadaptive response following transfer from LD to LL, the cell absorbance at room temperature and fluorescence emission spectra at 77 K for cells in LL and LD are comparable. The major emission peak is at 685–688 nm (from an antenna Chl a 680, perhaps Chl a-c complex), but, unlike higher plants and other algae, the emission bands at 696–698 nm (from Chl aII complex, Chl a 685, close to reaction center II) and 710–720 nm (from Chl a1, complexes, Chl a 695, close to reaction center I) are very minor and could be observed only in the fluorescence emission difference spectra of LL minus LD cells and in the ratio spectra of DCMU-treated to non-treated cells. Comparison of emission spectra of cells in LL and LD suggested that, in LL, there is a slightly greater net excitation energy transfer from the light-harvesting peridinin-Chl a (Chl a 670) complex, fluorescing at 675 nm, to the other antenna chlorophyll a complex fluorescing at 685–688 nm, and from the Chl a., complex to the reaction center II. Comparison of excitation spectra of fluorescence of LL and LD cells, in the presence of DCMU, confirmed that cells in LL transfer energy more extensively from the peridinin-Chl a complex to other Chl a complexes than do cells in LD.  相似文献   

8.
Abstract— Ctenophores are bioluminescent marine invertebrates closely related to the coelenterates. The isolated bioluminescent systems of the ctenophores Mnemiopsis and Beroë and the hydrozoan jellyfish Aequorea are protein-luciferin complexes (photoproteins) which flash upon the addition of Ca2+ ions. The photoprotein mnemiopsin has an oxygen-independent quantum yield for photoinactivation of bioluminescence as high as 0.5, placing it among the most light-sensitive proteins known. We have measured the action spectrum for this photoinactivation at 107 narrow (3.4 nm) wavelength bands between 230 nm and 570 nm, covering a range of four decade units in the action. The action spectrum in the visible region is identical with the absorption spectrum of native photoprotein, implicating bound luciferin. The UV action spectrum implies that absorption by aromatic amino acid residues also leads to extremely efficient photoinactivation. Although photoinactivation is a rapid first-order reaction, destruction of the luciferin is a slower, multiple-order process. Therefore, protein-bound luciferin is not the ultimate target of the photoinactivation. Absorption of light results in the dissociation of “active oxygen” from the photoprotein. Therefore, the ctenophore photoprotein is a precharged enzyme already containing bound luciferin and oxygen.  相似文献   

9.
The development of high-brightness far-red-emitting phosphors with emission wavelength within 650–750 nm is of great significance for indoor plant cultivation light-emitting diode (LED) lighting. Herein, we demonstrate a novel efficient far-red-emitting phosphors CaMg2La2W2O12:Mn4+ (abbreviated as CMLW:Mn4+) toward application in plant cultivation LEDs. Interestingly, the CMLW:Mn4+ phosphors show a broad excitation band in the 250–600 nm spectral range with two peaks at 352 and 479 nm, indicating they could be efficiently excited by near-ultraviolet and blue light. Under 352 nm excitation, the CMLW:Mn4+ phosphors exhibit an intense far-red emission band in the wavelength range of 650–800 nm peaking at 708 nm, corresponding to the 2Eg → 4A2g transition of Mn4+ ions. Mn4+ doping concentration-dependent luminescence properties are studied in detail, and the concentration quenching mechanism is also investigated. Particularly, the internal quantum efficiency of CMLW:Mn4+ phosphors reaches as high as 44%, and their PL spectra match well with the absorption spectrum of phytochrome PFR (PFR stands for far-red-absorbing form of phytochrome). Furthermore, a prototype LED device is fabricated by coating the as-prepared CMLW:0.8%Mn4+ phosphors on a 460 nm blue LED chip, which produces bright far-red emissions upon 20–300 mA driving currents. This work reveals that the newly discovered far-red-emitting CMLW:Mn4+ phosphors hold great potential for application in indoor plant cultivation.  相似文献   

10.
–Menaquinone-8 (MQ-8) was irradiated in vivo in Escherichia coli B/r and in vitro after extraction from E. coli B/r, using monochromatic radiation in the range 313–578 nm. Within experimental error, the action spectra for loss of chromatographic mobility after irradiation in vivo and in vitro agree with each other and with the absorption spectrum of pure MQ-8. The MQ-8 is extremely sensitive to near-UV light (300–380 nm), showing an F37in vivo at 334 nm of 1.3 kj/m2, a value 15 times lower than that required for growth delay, and 150 times lower than that for killing, of E. coli B/r. The quantum yield for this reaction in vivo at 334 nm has the very high value of 0.26. The high sensitivity of MQ-8 suggests involvement in near-UV-induced effects on the plasma membrane.  相似文献   

11.
The primary charge separation in photosystem (PS) I was measured on stacked pea thylakoids using the light-gradient photovoltage technique. Upon 532 nm excitation with picosecond flashes, a trapping time of 80 ± 10 ps for PS I was found, which is in close agreement with literature data. In the wavelength range between 700 nm and 717 nm the trapping time was essentially the same although there was an indication for a slight decrease. To further analyze the data we performed a spectral decomposition of PS I with Chi a and b solvent spectra. This procedure yielded bands at around 682 nm, 690 nm, 705 nm and 715 nm. According to this decomposition, a selective excitation of long-wavelength antenna pigments at wavelengths Λ > 710 nm is possible, because the direct excitation of the main 682 nm band is small compared to the excitation of the two most red-shifted bands. The invariability of the trapping time of the excitation wavelength suggests thermal equilibration of the excitation energy among all antenna pigments according to their excited state energy levels and their abundance. Hence, we conclude that trapping in PS I is essentially rate-limited by the primary charge separation much as it is the case in PS II. Then, according to our spectral decomposition in a time constant of2–3 ps is predicted for the primary charge separation in PS I.  相似文献   

12.
Light induces heat-shock gene HSP70A by a heat stress-independent pathway. Analysis of mutants defective in plastid-localized chlorophyll synthesis as well as feeding of chlorophyll precursors have previously provided evidence for the participation of the chloroplast in this light induction. An involvement of photosynthesis appears unlikely because an inhibitor of photosystem II and various mutations causing defects in photosystems I and II or the cytb6/f complex did not affect light inducibility. The competence of a mutant defective in carotenoid biosynthesis for induction of HSP70A by light also ruled out the involvement of photoreceptors with a carotenoid-based chromophore like chlamyrhodopsin. Analysis of the wavelength dependence of HSP70A mRNA accumulation revealed a major peak around 600 nm and a minor one around 450 nm. This suggests that a novel photoreceptor mediates this induction. Continuous irradiation during the induction phase was required for a sustained accumulation of HSP70A mRNA, indicating that continuous triggering of the signaling pathway is needed. A prerequisite for this light induction is a state of competence achieved by incubation of the cells in the dark for at least 1h.  相似文献   

13.
The inhibitory effect of the dye ruthenium red was studied in photosystem II-enriched submembrane fractions. A number of distinct types of interaction were found, which differed in their concentration range and required incubation time. Ruthenium red instantaneously quenches the initial chlorophyll a fluorescence level (F0) and the maximum fluorescence level (Fm) by enhancing radiationless deactivation in the chlorophyll light harvesting complex. Associated with this quenching of fluorescence is an instantaneous decrease in the quantum yield of oxygen evolution. Ruthenium red also inhibited the light saturated rate of oxygen evolution and the variable fluorescence, monitored 80 µs after a saturating excitation-flash. These inhibitions increased with incubation time and became greater than 50% within 5 min. Although ruthenium red was known to affect Ca2+ or Cl? sites specifically, the inhibitory action was more pronounced than simple Ca2+ or Cl? depletion. Incubation with ruthenium red for 5 min blocks the Z P680+ → Z+ P680 charge transfer reaction. Upon mixing with the photosystem II preparation, ruthenium red induced specific release of the extrinsic 16 kDa polypeptide associated with water-splitting without release of Mn. It is proposed that the inhibitor produces an ionic imbalance which alters the configuration of the donor side of photosystem II.  相似文献   

14.
Abstract— The first quantitative measurements of the wavelength dependence of oxygen consumption in systems containing eumelanin (from bovine eyes) and synthetic DOPA melanin are reported. Consumption of oxygen (considered to be a requirement for immediate pigment darkening) during irradiation of melanins with either visible or ultraviolet light was monitored using a spin probe nitroxide-electron spin resonance spectroscopic approach. From initial rates of oxygen removal, quantum yields have been obtained over a wavelength range from 230 to 600 nm. Eumelanins are moderately effective in promoting oxygen consumption; quantum yields are low for irradiation with visible light, but increase sharply with light of shorter wavelengths. The absolute quantum yield for oxygen consumption is about 0.1% for natural melanin at 320 nm. The action spectrum is similar for both natural and synthetic melanins, indicating that the major chromophore responsible for oxygen consumption is the same for both kinds of material. This chromophore is not the major melanin chromophore responsible for absorption of visible light. The action spectrum also clearly differs from published action spectra for melanogenesis; however, the weak wavelength dependence for visible light is similar to that found for immediate pigment darkening. Catalase decreases the rate of oxygen consumption by 50%, confirming that hydrogen peroxide is the major molecular product of oxygen reduction. A Type I (free-radical) mechanism evidently predominates: D2O and azide are shown to have only minor effects, ruling out any major contribution from a Type II (singlet-oxygen) process to the overall oxygen consumption.  相似文献   

15.
Photogeotropic equilibrium action spectra in the range from 301 to 740 nm were made for Phycomyces wild type and the three behavioral mutants C47 ( madA35 ), C109 ( madBlOl ) and LI (madCIIQ) , all of which have a raised phototropic threshold. In addition to two broad peaks at 365 and 455 nm, typical for flavins, the wild type action spectrum shows three novel peaks, which have not been observed previously. These peaks are located at 414, 491 and 650 nm. The 650 nm peak has a relative quantum efficiency of 3 × 10−8 compared to the peak at 414 nm. The wavelength dependent shapes of the fluence-response curves of the bending angle and the aiming error angle indicate more than one receptor pigment for phototropism. The shape of the action spectrum of C47 is basically unaltered in comparison to wild type. C109 and LI show substantial differences from the wild type. In the near UV two small peaks at 334 and 365 nm appear; the 414 and 491 nm peaks present in wild type and C47 are missing and two new peaks at 529 nm (not well resolved in C109) and 567 nm are found. None of the three mad mutations affects the 650 nm peak. A model of the sensory transduction chain is presented, which incorporates these and other known features.  相似文献   

16.
The maximum photosteady state fraction of K, xKmax, and the ratio of the quantum yields of the forward and back light reactions, trans-bacteriorhodopsin (bR) hArr; K, φbRK, were obtained by measuring the absorption changes produced by illumination of frozen water-glycerol (1:2) suspensions of light-adapted purple membrane at different wavelengths at -165°C. An independent method based on the second derivative of the absorption spectrum in the region of the β-bands was also used. It was found that The quantum yield ratio (0.66 ± 0.06) was found to be independent of excitation wavelength within experimental error in the range510–610 nm. The calculated absorption spectrum of K has its maximum at603–606 nm and an extinction 0.85 ± 0.03 that of bR. At shorter wavelengths there are P-bands at 410, 354 and 336 rim. Using the data of Hurley et al. (Nature 270,540–542, 1977) on relative rates of rhodopsin bleaching and K formation, the quantum yield of K formation was determined to be 0.66 ± 0.04 at low temperature. The quantum efficiency of the back reaction was estimated to be 0.93 ± 0.07. These values of quantum efficiencies of the forward and back light reactions of bR at - 165°C coincide with those recently obtained at room temperature. This indicates that the quantum efficiencies of both forward and back light reactions of bacteriorhodopsin are temperature independent down to -165°C.  相似文献   

17.
Tolyporphins are tetrapyrrole macrocycles produced by a cyanobacterium‐containing culture known as HT‐58‐2. Tolyporphins A–J are free base dioxobacteriochlorins, whereas tolyporphin K is an oxochlorin. Here, the photophysical characterization is reported of tolyporphin A and two synthetic analogues, an oxobacteriochlorin and a dioxobacteriochlorin. The characterization (in toluene, diethyl ether, ethyl acetate, dichloromethane, 1‐pentanol, 2‐butanone, ethanol, methanol, N,N‐dimethylformamide and dimethylsulfoxide) includes static absorption and fluorescence spectra, fluorescence quantum yields and time‐resolved data. The data afford the lifetime of the lowest singlet excited state and the yields of the nonradiative decay pathways (intersystem crossing and internal conversion). The three macrocycles exhibit only modest variation in spectroscopic and excited‐state photophysical parameters across the solvents. The long‐wavelength (Qy) absorption band of tolyporphin A appears at ~680 nm and is remarkably narrow (full‐width‐at‐half‐maximum ~7 nm). The position of the long‐wavelength (Qy) absorption band of tolyporphin A (~680 nm) more closely resembles that of chlorophyll a (662 nm) than bacteriochlorophyll a (772 nm). The absorption spectra of tolyporphins B–I, K (which were available in minute quantities) are also reported in methanol; the spectra of B–I closely resemble that of tolyporphin A. Taken together, tolyporphin A generally exhibits spectral and photophysical features resembling those of chlorophyll a.  相似文献   

18.
Urocanic acid (UCA) is a major UV chromophore in the upper layers of the skin where it is found predominantly as the trans isomer. UV irradiation induces photoisomerisation of trans-UCA to cis-UCA which has been shown to mimic some of the immunosuppressive properties of UV exposure. We examined the wavelength dependence for trans-UCA to cis-UCA photoisomerisation in vitro and in mouse skin in vivo over the spectral range270–340 nm. The resulting action spectra were very similar with maximal effectiveness at300–315 nm and equal activity at 270 nm and325–330 nm, demonstrating that UVA-II radiation (320–340nm) is efficient at UCA photoisomerisation. These action spectra differed markedly from the trans-UCA absorption spectrum in vitro and also the reported action spectrum for UV suppression of contact hypersensitivity in mice. These findings suggest that the relationship between cis-UCA formation in skin and UV-induced immunosuppression may be complex.  相似文献   

19.
Using a pump and test beam technique in the frequency domain with pump pulses in the nanosecond time range, the nonlinear transmission properties were investigated at room temperature in photosystem (PS) II membrane fragments and isolated light-harvesting chlorophyll a/b-protein preparations (LHC II preparations). In LHC II preparations and PS II membrane fragments, respectively, pump pulses of 620 nm and 647 nm cause a transmission decrease limited to a wavelength region in the nearest vicinity of the pump pulse wavelength (full width at half maximum ' 0.24 nm). In contrast, at 670 nm neither a transmission decrease nor a narrow band feature were observed. The data obtained for PS II membrane fragments and LHC II preparations at shorter wavelengths (620 nm, 647 nm) were interpreted in terms of excited state absorption of whole pigment-protein clusters within the light-harvesting antenna of photosystem II. The interpretation of the small transmission changes as homogeneously broadened lines led to a transversal relaxation time for chlorophyll in the clusters of about 4 ps.  相似文献   

20.
Quantitative action spectroscopy was performed in Halobacterium halobium. using four suited pigment mutants, namely the bacteriorhodopsin and halorhodopsin positive mutant strain M-l (BR+, HR+), the bacteriorhodopsin positive but halorhodopsin negative strain M-18 (BR+, HR-), the bacteriorhodopsin negative but halorhodopsin positive strain L-33 (BR-, HR+), and the bacteriorhodopsin and halorhodopsin negative strain L-07 (BR-, HR+). The approached questions were: First, photoenergetic synergism of halorhodopsin and bacteriorhodopsin in intact cells; second, photochromism and cellular function of the blue light-absorbing intermediates, i.e. M-412 and HR-410 in bacteriorhodopsin and in halorhodopsin, respectively. Dark-adapted cells of mutant strain M-l show wavelength-dependency of quantum yield of photo-phosphorylation, φATP. An 1.4-fold enhancement was found at 575 nm wavelength where the long wavelength absorbance bands of bacteriorhodopsin and halorhodopsin intersect. The enhancement vanished after a 30 min pulse of orange light (600 Wm-2 bandpass from 495 to 750 nm), but was restored after a 30 min pulse of blue light (100 Wm-2 bandpass from 325 to 480 nm). Photoreversibility of this enhancement probably reflects phototransformation of halorhodopsin from its ground state into its inactive intermediate, HR-410, and vice versa. The halorhodopsin-mediated enhancement with maximum quantum yield of photophosphorylation, φATP= 0.06, i.e. a quantum requirement of = 17 photons/ATP, is partly substituted by a rise in phosphate potential and explained in terms of a voltage-regulated gating effect on the H+-driven ATP-synthase, superimposed on the chemiosmotic mechanism of energy coupling. The blue-absorbing photochromic intermediate, M-412 of bacteriorhodopsin, dissipates light energy upon photoexcitation that is reflected by a spectral decline in quantum yield of photophosphorylation to a minimum value of = 0.01 at 415 nm, i.e. a quantum requirement of = 100 photons/ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号