首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Modulated differential scanning calorimetry has been used to quantify the glass transitions of small adsorbed amounts of poly(methyl methacrylate) (PMMA) on silica. While a relatively narrow, single glass transition was found for bulk PMMA, broader two-component transitions were found for the adsorbed polymer. A two-state model based on loosely bound polymer (glass transition similar to bulk) and more tightly bound polymer (glass transition centered around 156 degrees C) was used to interpret the thermograms. On the basis of this model, the amount of tightly bound polymer was found to be approximately 1.3 mg/m2, corresponding to a 1.1 nm thick layer. The change in heat capacity for the tightly bound polymer at the glass transition temperature was estimated to be about 16% of that of the bulk polymer.  相似文献   

2.
Polystyrenes lightly substituted with either tertiary amine groups or nitrophenol groups have been allowed to interact in concentrated t-butylbenzene solution and in bulk polymer. Above the glass transition temperature a temperature dependent equilibrium is achieved in the bulk polymer between the two substituents and the amine salt of the phenol. The degree of association found is considerably greater in the bulk polymer than in solution. The results show that much interpenetration of the polymer occurs, and the results are discussed in terms of models of the bulk amorphous state of the polymer.  相似文献   

3.
This paper examines the formulation of new porogenic mixtures used to prepare molecularly imprinted polymers (MIPs) in both thin film and bulk monolith formats. Films were cast by using spin coating to spread a pre-polymerization mixture onto a substrate, and rapid curing of the films was achieved with UV photolysis. The use of a low volatility solvent in combination with a linear polymer porogen resulted in a porous morphology and a 60-fold enhancement in the binding capacity, relative to a non-porous film prepared with a highly volatile solvent and in the absence of the polymer porogen. The opposite effect was seen in MIPs that were prepared in the traditional bulk monolith format, for which the binding efficiency of the MIP decreased monotonically with the concentration of the linear polymer porogen. Furthermore, bulk MIPs that were prepared in the presence of linear polymer porogens exhibited significantly decreased specific surface areas (from 620 to 8 m2/g for samples prepared with pure solvent and 50% polymer porogen, respectively). Despite the change in binding capacity and morphology, the selectivity of the bulk MIPs remained unaffected by the presence of the polymer porogens (approximately 50% chiral selectivity for all bulk MIPs considered). This difference in behavior of the two systems was attributed to the large difference in the kinetics of polymerization.  相似文献   

4.
分子印迹壳聚糖膜和柚皮苷模板分子间相互作用的研究   总被引:2,自引:0,他引:2  
以壳聚糖为膜材料,以柚皮苷为模板分子,通过硫酸交联在水相中制备了水相识别柚皮苷分子印迹壳聚糖膜。通过高效液相色谱(HPLC)、紫外光谱(UV)和红外光谱(FT-IR)初步研究了模板分子和功能单体之间的相互作用,表明体系产生了新的氢键。  相似文献   

5.
Abstract

Deep profile control technology of polymer microspheres has become a widely used new method in improving oil recovery in heterogeneous reservoirs. The viscoelastic property of polymer microspheres plays an important role in the deformable migration behavior. In this study, a new method of measuring the viscoelastic properties of polymer microspheres based on bulk gel was proposed. Using mechanical rheometer and microrheometer, the effects on the storage modulus and gel performance were systematically researched. The creep-recovery test was applied to characterize the creep behavior of different polymer microsphere bulk gel. The results show that the storage modulus of polymer microspheres could be controlled by adjusting the agent concentration in the synthetic reaction. Moreover, the kinetic equation of gel time of polymer microspheres bulk gel and reaction temperature was established: ln(GT)?=?3289.18(1/T)-9.33. Elastic strain index was put forward as a new parameter to characterize the viscoelasticity of polymer microsphere in creep-recovery test. Finally, relationship between elastic strain index and storage modulus was constructed and a classification criterion of polymer microspheres with different viscoelasticity was proposed based on a large number of creep-recovery results. The research could provide a good theoretical guidance and technical support for the understanding of viscoelasticity of polymer microspheres.  相似文献   

6.
Deuterium NMR and modulated differential scanning calorimetry (MDSC) were used to probe the behavior of ultrathin adsorbed poly(methyl acrylate) (PMA). The spectra for the bulk methyl-labeled PMA-d3 were consistent with the motions of the polymer segments being spatially homogeneous. For the polymers adsorbed on silica, multicomponent line shapes were observed. The segmental mobility of the surface polymers increased with increased adsorbed amounts. In contrast to the behavior of the polymers in bulk, the adsorbed lower-molecular-mass PMA-d3 was less mobile than the adsorbed high-molecular-mass polymer. The presence of a polymer overlayer was sufficient to suppress the enhanced mobility of the more-mobile segments of the adsorbed (inner) polymer. MDSC studies on adsorbed poly(methyl methacrylate) showed that the glass-transition temperature of the thin polymer films increased and broadened compared to the behavior of the polymer in bulk. The presence of a motional gradient with the less-mobile segments near the solid-polymer interface and the more-mobile segments near the polymer-air interface was consistent with the experimental observations.  相似文献   

7.
The effect of a radiation initiated polymer on the physico-mechanical properties of polymer incorporated mortar has been investigated. The monomer used was methylmethacrylate with divinylbenzene as a crosslinking agent, used at concentrations ranging from 2 to 10% of methylmethacrylate and polymerization was carried out using γ-radiation from 5 to 25 kGy. The influence on polymer loading, compressive strength, water absorption, apparent porosity and bulk density, in addition to thermal behaviour (as investigated by DTA) of polymer incorporated in mortar, were studied. The results indicate that the polymer loading, compressive strength and bulk density increase with increases in percentage of divinylbenzene as well as with the γ-radiation doses, whereas the water absorption and apparent porosity of the specimens decrease. This behaviour is attributed to the amount of polymer deposited in the pores of the samples.  相似文献   

8.
An increasing amount of experimental data now supports the idea that the dynamics of thin polymer films is different from bulk. An experimental consensus now supports the previously controversial view that glass transition temperatures of thin polymer films on weakly interacting substrates are reduced from bulk values, but evidence for whether the surface has a higher mobility than the bulk is still contradictory.  相似文献   

9.
Summary: The conformational behavior of a polymer in a critical binary solvent confined in a porous medium is studied. The size of the polymer in bulk, which is mainly governed by the correlation length of the solvent density fluctuations, depends on the proximity to the critical point of the binary mixture. We find that in contrast to the bulk behavior, the conformational properties of the polymer in a porous medium depends strongly on the pore size. The latter controls the correlation length of the solvent density fluctuations and thus determines the polymer size.  相似文献   

10.
 The roles of reaction inhomogeneity in phase separation of polymer mixtures were described and summarized via two examples: photocross-link of polymer mixtures in the bulk state and photopolymerization of monomer in the liquid state. The reaction kinetics, the reaction-induced elastic strain and the phase separation kinetics were monitored respectively by UV-Vis spectroscopy, Mach-Zehnder interferometry and laser-scanning confocal microscopy. It was found that phase separation in the bulk state was strongly influenced by the elastic strain associated with the intrinsic inhomogeneity of the reaction, whereas the autocatalytic behavior of the polymerization plays an important role in the resulting morphology in the liquid state. These experimental results are discussed in conjunction with the morphology control of polymer mixtures by using chemical reactions.  相似文献   

11.
The roles of reaction inhomogeneity in phase separation of polymer mixtures were described and summarized via two examples:photocross-link of polymer mixtures in the bulk state and photopolymerization of monomer in the liquid state. The reaction kinetics,the reaction-induced elastic strain and the phase separation kinetics were monitored respectively by UV-Vis spectroscopy,Mach-Zehnder interferometry and laser-scanning confocal microscopy.It was found that phase separation in the bulk state was strongly ...  相似文献   

12.
Methyl-tert-butyl fumarate (MtBF) was found to homopolymerize in bulk in the presence of 2,2′-azobisisobutyronitrile (AIBN) at 50–80°C to give a high molecular weight polymer. From IR, 1H-NMR and 13C-NMR spectra, this polymer was assumed to consist of alternating methoxycarbonylmethylene and tert-butoxycarbonylmethylene units, indicating that it was produced from MtBF through an ordinary vinylene polymerization mechanism. Consideration of a molecular model suggested that this polymer had a less flexible rodlike structure with the diameter of about 13.5 Å. The thermal properties of this polymer were also evaluated. Moreover, the bulk polymerization of MtBF initiated by AIBN was investigated kinetically at 60°C. The overall activation energy for this polymerization was determined to be 83.5 kJ/mol. The reaction orders with respect to the monomer and initiator concentrations were obtained as 2.0 and 0.33, respectively.  相似文献   

13.
A bulk sample of a nano composite consisting of poly(p‐phenylene benzobisthiazole) (PBZT) and a thermoplastic matrix polymer was obtained by polymer blending of a matrix polymer of thermoplastic aromatic polyamide and a reinforcing polymer of a copolymer consisting of a precursor of PBZT and a fragment in common with the matrix polymer, using organic solvent, followed by molding. The phase structure of obtained specimens was varied by controlling the molding process conditions. In particular, the mechanical properties, heat resistance, and chemical resistance of the matrix polymer of a bulk specimen which has a three‐dimensional network structure of PBZT were improved drastically, even when only a small amount of the reinforcing material was added. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 209–218, 1999  相似文献   

14.
Peculiarities of the state of the surface layer of the amorphous glassy polymer polystyrene are studied with a specially developed experimental approach. The essence of the method consists in the observation via atomic force microscope for the depth and rate of embedding of gold nanoparticles in a polymer after their preliminary adsorption on the polymer surface from hydrosol. It is shown that the polymer glass-transition temperature near the boundary with air is substantially lowered relative to its bulk value. “Equilibrium” thickness of the non-glassy (“melted”) surface layer is determined through analysis of the data on the kinetics of nanoparticle embedding, and it is revealed that the layer thickness increases with temperature, reaching, near the “bulk” glass-transition temperature, the magnitude that is close to the diameter of the macromolecular coil. The results obtained are analyzed with allowance for published data, and the semi-empirical formula describing variations in the thickness of the non-glassy surface layer as a function of temperature in the interval between the “surface” and “bulk” glass-transition temperatures of a polymer is proposed.  相似文献   

15.
Quasielastic neutron scattering was utilized to investigate the influence of confinement on polymer dynamics. Poly(methyl phenyl siloxane) chains were studied in the bulk as well as severely confined within the approximately 1-2 nm interlayer spacing of intercalated polymer/layered organosilicate nanohybrids. The temperature dependence of the energy resolved elastic scattering measurements for the homopolymer and the nanocomposites exhibit two distinct relaxation steps: one due to the methyl group rotation and one that corresponds to the phenyl ring flip and the segmental motion. Quasielastic incoherent measurements show that the very local process of methyl rotation is insensitive to the polymer glass transition temperature and exhibits a wave-vector independent relaxation time and a low activation energy, whereas it is not affected at all by the confinement. At temperatures just above the calorimetric glass transition temperature, the observed motion is the phenyl ring motion, whereas the segmental motion is clearly identified for temperatures about 60 K higher than the glass transition temperature. For the nanohybrid, the segmental motion is found to be strongly coupled to the motion of the surfactant chains for temperatures above the calorimetric glass transition temperature of the bulk polymer. However, the mean square displacement data show that the segmental motion in confinement is faster than that of the bulk polymer even after the contribution of the surfactant chains is taken into consideration.  相似文献   

16.
从高分子线团密度存在浓度依赖性角度出发,导出了从稀溶液至浓溶液范围内高分子链叠加度与浓度的定量关系式.以链叠加度为高分子溶液的结构参数,关联了文献中6种分子量的聚氯丁二烯在不同溶剂和温度条件下溶液相对黏度的变化.这表明,高分子溶液的宏观性质与溶液中高分子链叠加度这一微观结构参数密切相关.  相似文献   

17.
药物头孢氨苄分子模板聚合物水中结合性质的研究   总被引:15,自引:0,他引:15  
郭洪声  何锡文 《分析化学》2000,28(10):1214-1219
采用分子模板技术合成了以头孢氨苄为模板分子以三氟甲基丙烯酸和4-乙烯基吡啶同时为功能单体的分子模板聚合物。将得到的棒状聚合物研磨过筛后,运用平衡结合实验研究了头孢氨苄分子模板聚合物的结合性质,Scatchard分析表明,在所研究的浓度范围内,在聚合物中形成了两类不同的结合位点。头孢氨苄分子模板聚合物与其化学组成相同的非模板聚合物相比,有很高的结合容量。底物选择性实验表明,与其它结构相似的药物相比,  相似文献   

18.
Electrospun polymer nanofibers are gaining increasing importance in tissue engineering, wound dressing and drug delivery. Here, we present a thorough rheological study of polymer solutions in the bulk and at the interface to find correlations between those properties and the electrospinnability of the solutions and the morphology of the resultant nanofibers. Our results indicate that blended solutions of chitosan or alginate with poly(ethylene oxide) (PEO) are appropriate for electrospinning when they form conductive, unstructured fluids displaying plasticity, rather than elasticity, in the bulk and at the interface. The interfacial rheological parameters are three orders of magnitude lower than those in the bulk. We demonstrate for the first time that interfacial, rather than bulk, rheological parameters show improved correlation and can be used to predict the success of the electrospinning process. Using the interfacial parameters of samples with homologous compositions, different groups of solutions can be identified that form smooth nanofibers. However, rheological parameters of the bulk and at the interface provide complimentary information. The bulk parameters are determined by polymer concentration and directly affect jet initiation, while the interfacial behaviour determines the continuation of the jet and fibre formation. We propose that interfacial parameters are indispensible tools for the design of electrospinning experiments.  相似文献   

19.
We report the results of the investigations of the influence of filling of polymer with Aerosil nanosize particles on the glass transition and dynamics of the α- and the β-relaxation processes in poly(n-octyl methacrylate) by dielectric spectroscopy and differential scanning calorimetry (DSC). The polymer was filled with hydrophilic and hydrophobic Aerosil particles of 12 nm diameter. In filled polymers the characteristic frequency of the alpha-process was shifted to higher frequencies in comparison with pure bulk polymer at the same temperature. This suggests that the filling of the polymer with nanoparticles has resulted in the shift of its glass transition temperature Tg. This change in Tg was mainly due to the existence of a developed solid particle-polymer interface and the difference in the dynamic behavior of the polymer in the surface layers at this interface compared to the bulk behavior. This result was in agreement with DSC experiments.  相似文献   

20.
合成了一系列不同4-乙烯基吡啶含量的聚(甲基丙烯酸丁酯-co-4-乙烯基吡啶)(BVPy)共聚物,并对酚氧树脂(Phenoxy)的仲羟基进行了不同乙酰化程度的改性.用粘度法和激光光散射(LLS)研究了BVPy/改性Phenoxy共混物在溶液中的络合行为对氢键相互作用基团密度的依赖性,并用DSC研究了共混体系在本体中的相容性.将粘度法及LLS的结果结合起来,得到了改性Phenoxy/BVPy共混体系的不相容-相容-络合转变相图.在此基础上,用XPS初步考察了共混物的相容性对其表面组成的影响.结果表明,大分子间的络合相互作用可抑制共混物的表面富集.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号