首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In stability studies on moisture-resistant Opalmon tablets in press-through-packages (PTP), which were placed in aluminum bags, we found that the degradation rate of the dextran formulation is faster than that of the lactose formulation. The fast degradation of the dextran formulation is attributed to residual moisture in the package because drying the tablets before packaging suppressed the degradation and there is a good correlation between the stability of the drug and the water-activity of the tablets. Therefore, we developed a new drying method for the tablets, i.e. the rotary vacuum drying method, and investigated the effects of the operating conditions such as heating temperature, rotation speed, and vacuum degree on the drying time, and the appearance of the tablets. Using the rotary vacuum drying method, the tablets were dried over a short time (30 min) on a mass production scale so that the water activity was less than 0.03. Furthermore, the tablets suffered negligible damage such as breaking and chipping during the drying process. These results indicate that the rotary vacuum drying method is useful for drying tablets on mass production scales.  相似文献   

2.
Nilvadipine (NIL) solid dispersion using crospovidone (Cross-linked-N-vinyl-2-pyrolidone, cl-PVP) and methylcellulose (MC) as carriers was applied to tablet formulation. Several grades of cl-PVP and MC were used, and their influence on tablet properties such as hardness, disintegration, dissolution and chemical stability were investigated. The agitation granulation method was used for preparation of solid dispersion granules, and the granules were compressed using a rotary tableting machine, and finally the obtained tablets were coated with film. As the particle size of cl-PVP decreased, hardness and apparent solubility were increased, while dissolution rate was lowered. When a higher viscosity grade of MC was used, hardness and dissolution rate were increased, and apparent solubility did not change. All batches of tablets were chemically stable at 40 degrees C, 75% relative humidity (R.H.) for six months. Finally, tablets with enhanced dissolution properties were obtained by using Polyplasdone XL-10 and Metolose SM-25 as the grades of cl-PVP and MC, respectively. These formulation tablets showed higher solubility and dissolution rate during storage as well as initial indicating good physical stability.  相似文献   

3.
Telmisartan (anti-hypertensive) is insoluble in water; hence the drug may be slowly or incompletely dissolved in the gastro intestinal tract. So the rate of dissolution and therefore its bioavailability is less (bioavailability 42%). In the present study an attempt has been made to prepare immediate release tablets of telmisartan by using Polyplasdone XL-10 (Crosspovidone) at intragranular, extragranular and partly intra and extragranular level of addition to increase the rate of drug release from dosage form to increase the dissolution rate and hence its bioavailability. The prepared granules and tablets were evaluated for their physiochemical properties and in-vitro dissolution study was conducted for the prepared tablets. It was concluded that the immediate release tablets with proper hardness, disintegration time and with increase rate of dissolution can be made using Polyplasdone XL-10. Formuation-10 (F10) was selected for stability study and the in-vitro dissolution study showed that was no difference in percent of drug released between initial and sixth month sample.  相似文献   

4.
Oral controlled release matrix tablets of zidovudine were prepared using different proportions and different viscosity grades of hydroxypropyl methylcellulose. The effect of various formulation factors like polymer proportion, polymer viscosity and compression force on the in vitro release of drug were studied. In vitro release studies were carried out using United States Pharmacopeia (USP) type 1 apparatus (basket method) in 900 ml of pH 6.8 phosphate buffer at 100 rpm. The release kinetics were analyzed using Zero-order model equation, Higuchi's square-root equation and Ritger-Peppas' empirical equation. Compatibility of drug with various formulations excipients used was studied. In vitro release studies revealed that the release rate decreased with increase in polymer proportion and viscosity grade. Increase in compression force was found to decrease the rate of drug release. Matrix tablets containing 10% hydroxypropyl methylcellulose (HPMC) 4000 cps were found to show a good initial drug release of 21% in the first hour and extended the release upto 16 h. Matrix tablets containing 20% HPMC 4000 cps and 10% HPMC 15000 cps showed a first hour release of 18% and extended the release upto 20 h. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets followed non-Fickian or anomalous release. No incompatibility was observed between the drug and excipients used in the formulation of matrix tablets. The developed controlled release matrix tablets of zidovudine, with good initial release (17-25% in first hour) and which extend the release upto 16-20 h, can overcome the disadvantages of conventional tablets of zidovudine.  相似文献   

5.
TG and DSC data were used to determine the thermal parameters of metronidazole drug and tablets. Three tablets A, B and C were analysed. The TG curves of metronidazole drug and tablets A and B displayed five and C four thermal decomposition processes, respectively. Analysis of the DSC data pointed to chemical interactions between metronidazole drug and the excipients of tablets, suggested by alterations in the melting point of metronidazole. The rate constants obtained from the isothermal TG data presents following sequence of the thermal stability: tablet A>tablet C>metronidazole drug>tablet B. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Differential scanning calorimetry (DSC) and thermogravimetry (TG) were used in order to evaluate the thermal stability of an enalapril maleate formulation packaged in two types of packaging, polyvinyl chloride/aluminum blister and aluminum strip. Enalapril and the excipients employed in the formulation were also evaluated by TG and DSC. Tablets were analyzed before and after storage in an acclimatized room at 40 °C and relative humidity of 75 % for 90 days. The DSC and TG results were compared with the results of dosage of enalapril and related compounds obtained by high-performance liquid chromatography. These results indicate an occurrence of chemical interaction between enalapril maleate and the excipients during its storage. After storage, it was observed that the enalapril content reduced and the predominant degradation product was diketopiperazine for both types of packaging. The predominance of diketopiperazine could be related to the absence of sodium bicarbonate in the tablets, alkalinizing agent employed in the thermal stabilization of the drug.  相似文献   

7.
The aim of this article was to determine the optimal ingredients for the rapidly disintegrating oral tablets prepared by the crystalline transition method (CT method). The effect of ingredients (diluent, active drug substance and amorphous sugar) on the characteristics of the tablets was investigated. The ingredients were compressed and the resultant tablets were stored under various conditions. The oral disintegration time of the tablet significantly depended on diluents, due to differences in the penetration of a small amount of water in the mouth and the viscous area formed inside the tablet. The oral disintegration time was 10-30 s for tablets with a tensile strength of approximately 1 MPa, when erythritol, mannitol or xylitol was used as the diluent. The increase in the tensile strength of tablets containing highly water-soluble active drug substances during storage was as large as that of tablets without active drug substances, while the increase in the tensile strength of tablets containing low water-soluble active drug substances was small. It was therefore found that highly water-soluble active drug substances were more suitable for the formulation prepared by the CT method than low water-soluble active drug substances. Irrespective of the type of amorphous sugar (amorphous sucrose, lactose or maltose) used, the porosity of tablets with 1 MPa of tensile strength was 30-40%, and their oral disintegration time was 10-20 s. The optimal ingredients for rapidly disintegrating oral tablets with reasonable tensile strength and disintegration time were therefore determined from these results.  相似文献   

8.
Sodium salt formation of mefenamic acid (MA) was studied as a way to solve the formulation and dissolution problems of MA. For this purpose, sodium salt of mefenamic acid (Na-MA) was prepared by reacting MA powder with equimolar sodium hydroxide in an aqueous phase, and consequently, Na-MA solution was obtained. The resultant solution was lyophilized and Na-MA powder was collected. The salt formation was confirmed by the results of fourier transformation-infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies on Na-MA powder in comparison to MA powder. Na-MA powder was assessed for direct compressibility, in comparison to MA powder, when formulated as a mixture with minimum amount of Avicel((R)) pH 101 and then compressed into tablets using a hydraulic tablet press. Na-MA tablets exhibited satisfactory hardness and friability, and did not show capping or lamination. On the other hand, some MA tablets showed capping or lamination upon compression and all the tested MA tablets for friability capped. Na-MA tablets were also studied for drug dissolution, in comparison to MA tablets, in water, a pH 7.4 phosphate buffer, and a pH 7.4 phosphate buffer after soaking in 0.1 m HCl. Under these different dissolution conditions, Na-MA tablets showed much higher dissolution rate and extent than MA tablets. The results of the study suggested that Na-MA can be considered as a solution form for the formulation and dissolution problems of MA.  相似文献   

9.
A novel floating sustained release tablet having a cavity in the center was developed by utilizing the physicochemical properties of L-menthol and the penetration of molten hydrophobic polymer into tablets. A dry-coated tablet containing famotidine as a model drug in outer layer was prepared with a L-menthol core by direct compression. The tablet was placed in an oven at 80°C to remove the L-menthol core from tablet. The resulting tablet was then immersed in the molten hydrophobic polymers at 90°C. The buoyancy and drug release properties of tablets were investigated using United States Pharmacopeia (USP) 32 Apparatus 2 (paddle 100 rpm) and 900 ml of 0.01 N HCl. The L-menthol core in tablets disappeared completely through pathways in the outer layer with no drug outflows when placed in an oven for 90 min, resulting in a formation of a hollow tablet. The hollow tablets floated on the dissolution media for a short time and the drug release was rapid due to the disintegration of tablet. When the hollow tablets were immersed in molten hydrophobic polymers for 1 min, the rapid drug release was drastically retarded due to a formation of wax matrices within the shell of tablets and the tablets floated on the media for at least 6 h. When Lubri wax? was used as a polymer, the tablets showed the slowest sustained release. On the other hand, faster sustained release properties were obtained by using glyceryl monostearate (GMS) due to its low hydrophobic nature. The results obtained in this study suggested that the drug release rate from floating tablets could be controlled by both the choice of hydrophobic polymer and the combined use of hydrophobic polymers.  相似文献   

10.
The compatibilities and stabilities of some binary mixtures and generic hydrochlorothiazide formulations were studied by using TG, DSC and a DSC-photovisual system. The kinetic parameters were determined via the Arrhenius equations. Tablet B presented higher compatibility and thermal stability than those of tablets A and C. The photovisual system demonstrated that the decomposition of tablet A occurs before the melting point, due to the Maillard reaction between the hydrochlorothiazide and lactose present in the formulation. The behaviour and rate constants of binary mixtures suggest that lactose can be substituted for microcrystalline cellulose, MC(101), in tablet A. The DSC and TG data revealed different characteristics of compatibility and stability in generic formulations from different manufacturers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A very fast, economical and simpler direct spectrophotometric method was investigated for paracetamol (PC) determination in aqueous medium without using any chemical reagents. The method is based on the photo-absorption of the analyte at 243 nm after dissolution in water. The change in structure of PC after addition of water was studied by comparing the corresponding FTIR spectra. Optimization studies were conducted by using a 5 microg ml(-1) standard solution of the analyte. Various parameters studied include, time for stability and measurement of spectra, effect of HCl, NaOH, CH(3)COOH and NH(3) for change in absorbance and shift in spectra, interference by some analgesic drugs and some polar solvents and temperature effect. After optimization, Beer's law was obeyed in the range of 0.3-20 microg ml(-1) PC solution with a correlation coefficient of 0.9999 and detection limit of 0.1 microg ml(-1). The newly developed method was successfully applied for PC determination in some locally available tablets and urine samples. The proposed method is very useful for quick analysis of various types of solid and liquid samples containing PC.  相似文献   

12.
Thermal analysis is a routine method in the solution of pharmaceuticals problems such as the control of raw materials, to the determination of purity, to the qualitative and quantitative analysis of drug formulation, tests of thermal stability and compatibility, the determination of kinetic parameters, etc. The evaluation of thermal stability in the solid state is mostly made by analyzing their decomposition under isothermal and non-isothermal conditions. The present work reports the study on the thermal behavior of pentoxifylline—active substance and tablets, respectively, the determination of the kinetic parameters for the decomposition process under non-isothermal conditions and in a nitrogen atmosphere at five heating rates: 2.5, 5, 7.5, 10 and 15 °C min?1. For the determination of kinetic parameters from the TG/DTG curves, the following differential methods were utilized: Friedman isoconversional and Chang, respectively, integral methods: Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Li–Tang, and Starink. Thermoanalytical curves showed that the active substance is thermally more stable than the tablets. The decrease in stability was attributed to the presence of excipients.  相似文献   

13.
The aim of this study was to evaluate the influence of Na-bicarbonate as an effervescent agent on the floating and sustained-release characteristics in 0.1 M HCl of tablets made of Eudragit E PO (EE) and/or Eudragit L-100-55 (EL) as matrix formers at different EE:EL weight ratios: 0:100, 25:75, 50:50, 75:25, and 100:0. The tablets were made by direct compression utilizing metronidazole as a model drug. Effervescent tablets with 50EE/50EL (w/w) showed the best floating and sustained drug release properties in the dissolution medium. The corresponding noneffervescent tablets were nonfloating and showed significantly faster drug release. Effervescent tablets with single polymers showed an immediate drug release pattern. These results were explained by Fourier-transform infrared spectroscopy and elemental analysis, which showed strong evidence of interpolyelectrolyte complexation between EE and EL when they were exposed to 0.1 M HCl as an effervescent hybrid matrix, but not as a noneffervescent hybrid matrix. The role of Na-bicarbonate in allowing EE-EL complexation during dissolution was explained as due to raising the pH around EL particles for sufficient polymer ionization and ionic-interaction with the ionized EE.  相似文献   

14.
以茶碱为模型药物,大豆蛋白和海藻酸钠作为骨架材料,采用混合压片法制备了不同比例的药物片剂。采用紫外比色法测定释放效果,考察了大豆蛋白与海藻酸钠不同比例以及不同pH释放介质和高湿度对茶碱片稳定性的影响。结果表明:大豆蛋白和海藻酸钠作为骨架材料的片剂释药时间都达到了8h以上,在pH6.8PBS中的释药率相对pH1.2盐酸溶液要快,具有良好的定向控释特性。随着湿度的增加,茶碱释放率略有下降,具有较好的湿度稳定性。通过适度调节大豆蛋白和海藻酸钠的比例可实现不同控释效果。实验结果表明大豆蛋白和海藻酸钠共混物是一种良好的天然药物缓控释骨架材料,其释放过程符合一级动力学特征,是药物扩散和骨架溶蚀二者共同作用的结果。  相似文献   

15.
The effects of excipients on the protein stability during lyophilization as well as the storage stability of lyophilized bilirubin oxidase (BO) and beta-galactosidase (GA) formulations were studied using four polymer excipients: dextran, polyvinylalcohol (PVA), poly(acrylic acid) (PAA), and alpha, beta-poly(N-hydroxyethyl)-L-aspartamide (PHEA). Denaturation of BO and GA during lyophilization largely depended on the excipient used. Dextran appeared to cause severe damage to proteins, whereas PHEA protected proteins effectively from denaturation. Storage stability of BO and GA formulations also depended on the excipients, such that the formulations containing dextran and PAA were relatively unstable. Storage stability was improved by absorption of a small amount of water for all the formulations studied. Absorption of a larger amount of water, however, decreased the storage stability of the formulations containing PVA, PAA or PHEA. In contrast, the storage stability of formulations containing dextran did not decrease noticeably with increasing water. This may be because formulations containing dextran have a higher glass transition temperature than formulations containing PVA, PAA or PHEA when a large amount of water is absorbed.  相似文献   

16.
The aim of this study was to prepare, using taste-masked granules, tablets which can rapidly disintegrate in saliva (rapidly disintegrating tablet), of drugs with bitter taste (pirenzepine HCl or oxybutynin HCl). The taste-masked granules were prepared using aminoalkyl methacrylate copolymers (Eudragit E-100) by the extrusion method. None of the drugs dissolved from the granules (% of dissolved, < 5%) even at 480 min at pH 6.8 in the dissolution test. However, the drugs dissolved rapidly in the medium at pH 1.2 in the dissolution test. Rapidly disintegrating tablets were prepared using the prepared taste-masked granules, and a mixture of excipients consisting of crystalline cellulose (Avicel PH-102) and low-substituted hydroxypropylcellulose (L-HPC, LH-11). The granules and excipients were mixed well (mixing ratio by weight, crystalline cellulose: L-HPC = 8:2) with 1% magnesium stearate, and subsequently compressed at 500-1500 kgf in a single-punch tableting machine. The prepared tablets (compressed at 500 kgf) containing the taste-masked granules have sufficient strength (the crushing strength: oxybutynin tablet, 3.5 kg; pirenzepine tablet, 2.2 kg), and a rapid disintegration time (within 20 s) was observed in the saliva of healthy volunteers. None of the volunteers felt any bitter taste after the disintegration of the tablet which contained the taste-masked granules. We confirmed that the rapidly disintegrating tablets can be prepared using these taste-masked granules and excipients which are commonly used in tablet preparation.  相似文献   

17.
The object of this study was to develop hydroxypropyl methylcellulose (HPMC) based cephalexin extended release tablet, which can release the drug for six hours in predetermined rate. Twenty-one batches of cephalexin tablets were prepared by changing various physical and chemical parameters, in order to get required theoretical release profile. The influences of HPMC, microcrystalline cellulose powder (MCCP), granulation technique, wetting agent and tablet hardness on cephalexin release from HPMC based extended release tablets were studied. The formulated tablets were also characterized by physical and chemical parameters. The dissolution results showed that a higher amount of HPMC in tablet composition resulted in reduced drug release. Addition of MCCP resulted in faster drug release. Tablets prepared by dry granulation was released the drug slowly than the same prepared with a wet granulation technique. Addition of wetting agent in the tablets prepared with dry granulation technique showed slower release. An increase in tablet hardness resulted in faster drug release. Tablets prepared with a wet granulation technique and having a composition of 9.3% w/w HPMC with a hardness of 10-12 kg/cm(2) gave predicted release for 6 h. The in vitro release data was well fit in to Higuchi and Korsmeyer-Peppas model. Physical and chemical parameters of all formulated tablets were within acceptable limits. One batch among formulated twenty-one batches was successful and showed required theoretical release. The effect of storage on in vitro release and physicochemical parameters of successful batch was studied and was found to be in acceptable limits.  相似文献   

18.
The variables that influence the tablets obtained by direct compression method deserve to be studied to minimize formulations costs and to improve the physicochemical and biopharmaceutical properties of the compacts. Here, we explore the adjuvants effects on amoxicillin tablet formulations considering multiple responses, and indicate the most suitable formulation composition. A 2(3) full factorial design was built to different amoxicillin formulations, each one containing three replicate batches, and eight responses (physicochemical and biopharmaceutical parameters) were obtained. The microcrystalline cellulose (MCC) type Avicel PH-102 (low) or PH-200 (high), the absence (low) or presence (high) of spray-dried lactose (LAC), and the absence (low) or presence (high) of disintegrant (DIS) were the levels investigated. The more relevant responses to the distinct formulations from the experimental design were hardness, friability, and the amount of amoxicillin dissolved during the first hour. PCA biplot indicated high values of amount of drug dissolved in 60 min as advantageous responses for the investigated amoxicillin tablet formulations and high values of friability as not desirable. Considering the individual response evaluation, the most suitable amoxicillin tablet formulation should present in its composition the MCC type Avicel PH-102 (low level) and the superdisintegrant agent (DIS high level), croscarmellose sodium, but no LAC (low level).  相似文献   

19.
The mass variation test is a simplified alternative test version of the content uniformity test. In the case of coating tablets and capsules, the mass variation test is principally applied to test the inner cores or fillings containing the active ingredient. However, some exceptions exist in pharmacopoeias. The effects of tablet coating and capsule shell on the results of the mass variation test were studied. The mass variation of outer crusts (coatings, capsule shells) and inner cores (core tablets, fillings) was measured separately in several products. The effects of coating on weight variability were very large for sugar-coated tablets. Relative standard deviation (RSD) of the formulation weight (RSD(W)) of sugar-coated tablets (2.73%) was larger than that of plain tablets (0.77%). The cause of the large RSD(W) is the large variation the weight of sugar-coating accounting for 44% of formulation weight. In the case of film-coated tablets, the effect of coating weight on the mass variation test was very small because the rate of coating in comparison to the whole weight was small. In the case of hard capsules, the usage of whole formulation weight resulted in underestimation of variations of filling weight. The differences between dosage forms in the applicability of the mass variation test are caused by differing weight proportions and variability of the outer coatings or shells. To avoid the underestimation of mass variation for hard capsules, a corrected acceptance value is useful. For all the dosage units, the mass variation test can principally be applied to determine which mass is expected to be proportional to the content of the active ingredient. However, some modification of acceptance values enables application of the mass variation tests to inapplicable cases, such as when the RSD of drug concentration (RSD(C)) is larger than 2%.  相似文献   

20.
Lansoprazole fast-disintegrating tablets (LFDT) are a patient-friendly formulation that rapidly disintegrates in the mouth. LFDT consist of enteric-coated microgranules (mean particle size, approximately 300 microm) and inactive granules. In the design of the inactive granules, mannitol was used as a basic excipient. Microcrystalline cellulose, low-substituted hydroxypropyl cellulose (L-HPC), and crospovidone were used as binders and disintegrants. A new grade of L-HPC (L-HPC-33), with a hydroxypropoxy group content of 5.0-6.9%, was developed and it has no rough texture due to a decrease in water absorption. It was clarified that L-HPC-33 could be useful as a binder and disintegrant in rapidly disintegrating tablets. LFDT contain enteric-coated microgranules in tablet form. The enteric-coated microgranule content in LFDT affect qualities such as tensile strength, disintegration time in the mouth, and dissolution behavior in the acid stage and in the buffer stage of LFDT. The 47.4% content of the enteric-coated microgranules was selected to give sufficient tensile strength (not less than 30 N/cm(2)), rapid disintegration time in the mouth (not more than 30 s), and dissolution behavior in the acid stage and buffer stage similar to current lansoprazole capsules. Compression force affected the tensile strength and the disintegration time in the mouth, but did not affect the dissolution behavior in the acid and buffer stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号