首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
YANG Feng  MA Li  MA Zhi-Yuan 《结构化学》2011,30(8):1183-1188
The utilization of polyoxometalates (POMs) or their derivatives as homogeneous or heterogeneous catalysts in alkene epoxidation is a subject of considerable research activity[1]. The limitation to the use of POMs in these catalytic reactions is either their relatively low selectivity in epoxide formation or applicability for a rather limited type of alkenes. Therefore, it would be beneficial if the catalysts bear high selectivity for epoxidation and are applicable for a rather wide variety of alkenes, which is desirable in industrial processes and also vital for the selection of an ideal catalyst[2]. In search for an efficient and practical epoxidation method to utilize aqueous H2O2 as terminal oxidant, we focus on the rare-earth complexes with lacunary POM ligands.  相似文献   

2.
Environmental catalysis has been steadily growing because of the advances in its scientific and engineering aspects,as well as due to the new environmental challenges in the industrial era.The development of new catalysts and materials is essential for new technologies for various environmental applications.Ceramics play important roles in various environmental applications including the identification,monitoring,and quantification of pollutants and their control.Ceramics have important applications as sensors and photocatalysts,and they are extensively used as catalyst carriers and supports.Many ceramics are being explored as catalysts for pollution control applications.Their low cost,thermal and chemical stability,and capability of being tailored make them especially attractive for pollution control applications.Although a wide variety of materials have been developed as catalyst supports,this area is still of interest with new or modified catalyst supports being frequently reported.It is of equal importance to develop new or modified processes for the loading of catalysts on specific supports.Applications like chemical looping combustion(CLC) and other catalytic combustion processes are raising the demands to a new scale.We have been working on the development of both new and modified support materials,including mesoporous materials without structural order for possible applications in CLC and other catalytic reactions.Successful attempts have been made in the modification of conventional γ-Al2O3 and improved synthesis processes for supporting perovskite type catalysts.Our research on environmental catalysis applications of ceramic materials and processes are also briefly discussed.  相似文献   

3.
Solving the problem of catalyst deactivation is essential in process design. To do this, various aspects of the kinetics of processes with catalyst deactivation, and their different mechanisms, are discussed. Catalyst deactivation often cannot be avoided, but more knowledge on its mechanism can help to find kinetic means to reduce its harmful consequences. When deactivation is caused by coke, the generation of coke precursors is the determining step in the deactivation kinetics. Different types of deactivation were distinguished that lead to different evolution of the process. The phenomenon of non-uniform coking can be linked to catalyst surface non-uniformity. For the class of catalysts with more than one type of active sites, an explanation was suggested for the observed trends in the deactivation modes. For catalytic proc-esses using catalyst particles of industrial size, the influence of intraparticle diffusion resistance is important. The analysis showed that for a number of processes, the decrease of the reaction rate due to deactivation is less under diffusion control. For certain reaction mechanisms, there exist operation conditions where the rate of the process under diffusion control exceeds the rate in the kinetic control regime. A signifi-cant problem is the change of selectivity in the course of catalyst deactivation. The selectivity may either decrease or increase, and depends on the reaction mechanism during deactivation. The changes are larger when there is no diffusion resistance. The intentional poisoning of catalysts and its influence on catalyst activity and selectivity for the process of ethylene oxide production was discussed.  相似文献   

4.
The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts.  相似文献   

5.
It is of vital importance to accelerate the sluggish oxygen reduction reaction(ORR)process at the cathode with earth-abundant metal-based catalysts for the commercialization of low-temperature polymer electrolyte membrane fuel cells.In consideration of high catalytic activity,long-term stability and low cost of potential ORR electrocatalysts,transition metal species have attracted much interest and transition metal-nitrogen-carbon(M-N/C,M=Fe,Co,Ni,Mn,etc.)catalysts have been widely considered as the most promising non-precious metal catalysts for ORR.Herein,the fundamental understanding of ORR catalytic mechanism and the identification of active centers are briefly introduced,and then different M-N/C catalysts classified by precursors with the strategies for design and optimization are highlighted.The challenges and possible opportunity for future development of high-performance ORR catalysts are finally proposed.  相似文献   

6.
正Chemical reactions catalyzed by solid catalysts have recently expanded rapidly from traditional heterogeneous catalytic reactions to photocatalytic reactions and further to plasmonic-catalytic reactions,however,the fundamental understanding of the commonalities and differences among heterogeneous catalysis,  相似文献   

7.
8.
<正>Enzyme activity lays the foundation for the biochemical processes since the origin of life [1,2], and understanding the mechanism and kinetics of enzyme reactions is very important for the study of life science and bioengineering. The ensemble-averaged experiments are unable to characterize the transient intermediates or various specific steps during the catalytic cycle of enzymes, which brings a challenge to reveal enzyme-catalytic mechanisms. Now, in the article published in the Natur...  相似文献   

9.
The decomposition and CO2 reforming of methane,respectively,are promising alternatives to industrial steam methane reforming. In recent years,research has been focused on the development of catalysts that can operate without getting deactivated by carbon deposition,where,in particular,carbon catalysts have shown positive results. In this work,the role of carbon materials in heterogeneous catalysis is assessed and publications on methane decomposition and CO2 reforming of methane over carbon materials are reviewed. The influence of textural properties(BET surface area and micropore volume,etc.) and oxygen surface groups on the catalytic activity of carbon materials are discussed. In addition,this review examines how activated carbon and carbon black catalysts,which are the most commonly used carbon catalysts,are deactivated. Characteristics of the carbon deposits from methane are discussed and the influence of the reactivity to CO2 of fresh carbon and carbonaceous deposits for high and steady conversion during CO2 reforming of CH4 are also considered.  相似文献   

10.
Direct conversion of methane to higher hydrocarbons is an effective process to solve the problem of natural gas utilization. Although remarkable progress has been achieved on the dehydro-aromatization of methane (DAM), low conversion caused by severe thermodynamic limitations,coke formation, and catalysis deactivation remain important drawbacks to the direct conversion process. Molybdenum catalysts supported on HZSM-5 type zeolite support are among the most promising catalysts. This review focuses on the aspects of direct methane conversion, in terms of catalysts containing metal and support, reaction conditions, and conversion in different types of reactors. The reaction mechanism for this catalytic process is also discussed.  相似文献   

11.
Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic performance in heterogeneous catalysis, including the direct synthesis of middle isoparaffins or dimethyl ether from syngas, as compared to the conventional hybrid catalysts. The present review highlights the recent development in the design of capsule catalysts and their catalytic applications in heterogeneous catalysis. The capsule catalyst preparation methods are introduced in detail, such as hydrothermal synthesis method, dual-layer method, physically adhesive method and single crystal crystallization method. Furthermore, several new applications of capsule catalysts in heterogeneous catalytic processes are presented such as in the direct synthesis of liquefied petroleum gas from syngas, the direct synthesis of para-xylene from syngas and methane dehydroaromatization. In addition, the development in the design of multifunctional capsule catalysts is discussed, which makes the capsule catalyst not just a simple combination of two different catalysts, but has some special functions such as changing the surface hydrophobic or acid properties of the core catalysts. Finally, the future perspectives of the design and applications of capsule catalysts in heterogeneous catalysis are provided.  相似文献   

12.
13.
固定床反应器参数灵敏性与失控分析   总被引:1,自引:0,他引:1  
本文采用邻二甲苯氧化的复合反应动力学模型分析了固定床反应器的参数灵敏性和失控行为,并与该反应的简单反应动力学模型的研究结果作了比较,发现二者间有显著的差别。本文还考察了固定床反应器对冷却介质流量和进口温度的灵敏性,发现反应器对冷却介质流量和进口温度的发迹极其敏感。因此对于强放热反应过程,考虑反应器对冷却介质的流量和进口温度的参数灵敏性对反应器的设计和控制是必要的。  相似文献   

14.
在非平衡态热力学的基础上探索建立催化理的新途径   总被引:1,自引:0,他引:1  
吴越  杨向光 《化学进展》2003,15(2):81-91
平衡态热力学一直被认作多相催化理论的基石之一。但是,它并不能概括工作中的催化剂的状态和行为,这主要是这里还发生一些非平衡过程。催化体系常常处于非平衡状态之下,而非平衡态条件下体系状态和行为,同时取决于体系的动力学和热力学。联系动力学和热力学最一般的关系式并非原来的De Donder不等式:Ar≥0,而是新的De Donde方程ln r^-/r^-=A/RT。同时发生的总反应之间的热力学耦合对总反应的作用只是形式上的,远不及催化反应链中各基元步骤之间在动力学上的耦合那么重要。通过在动力学方程中引入反应亲和力(热力学位)得到的动力学-热力学结合近似分析,可以用来分析非平衡态的催化反应和催化剂状态。非平衡态热力学在建立多相催化理论中,较之原来的平衡态热力学将能提供更能采纳的和更有意义的物理化学背景。  相似文献   

15.
The activity of Mg−Al basic heterogeneous catalysts in the reactions of alcohols with ethylene oxide was studied. The kinetics of alcohol oxyethylation was examined. The kinetic equation of the reaction was determined and the structure of products was studied. The distribution coefficients of the oxyethylation reaction products were calculated. A comparison of the catalytic activity of Mg−Al hydroxides and products of their thermal treatment was made.  相似文献   

16.
Monomer transport and polymerization kinetics are two key phenomena in olefin polymerization with heterogeneous transition metal catalysts. To have a better understanding of these interrelated kinetics and diffusion phenomena, a quantitative calculation of the monomer diffusion directly from experimental study is essential. In this work, a novel temperature-perturbation technique is developed to systematically study the kinetic and diffusion limitations in catalyzed gas phase olefin polymerization. A physical model of the particle growth mechanism as well as its mathematical representation is presented and the diffusion limitations occurring in the system at high temperature are characterized and quantitatively analyzed. Finally, the practical implications of the results of this study on the operation of industrial scale polyolefin reactors are examined. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2075-2096, 1997  相似文献   

17.
The oxidation of o-xylene and/or naphthalene to phthalic anhydride is one of the important industrial processes based on catalytic selective oxidation reactions. Vanadia--titania catalysts have been used in the industrial phthalic anyhdride process for the last 50 years. The operation parameters like the temperature range of operation, reactor inlet pressures, contact times, o-xylene loadings, etc. were constantly improved during this period of continuous process optimization so as to optimize catalyst performance and increase its life time. However, a fundamental understanding of the mutual interaction of the rather complex reaction network and the catalyst formulation is still missing. Recently, a detailed study of by-product formation as function of process conditions allowed us to develop a novel, improved reaction scheme for the catalytic oxidation of o-xylene. Based on this understanding, a detailed investigation was conducted for the first time of the by-product formation under varying operation conditions and as a function of the active mass variation exploiting high-throughput, as well as bench scales reactors. This high-throughput testing allowed us to relate reaction kinetics to novel catalyst formulations.  相似文献   

18.
Carbonylation of olefins, alcohols and halides using homogeneous as well as heterogeneous catalysts has been discussed. Highlights of contributions on the activity, selectivity and stability of catalysts for carbonylation reactions are discussed. Kinetics and mechanism including characterization of the intermediate catalytic species has also been reviewed. The performance of anchored Pd complexes on mesoporous supports (MCM-41 and MCM-48), water soluble Pd complexes and supported Pd catalysts in carbonylation of aryl alcohols and olefins has been discussed in the context of catalyst-product separation. Some aspects of kinetic modelling and reaction engineering of these multiphase catalytic reactions have also been reviewed.  相似文献   

19.
氨合成催化剂及其催化反应机理研究进展   总被引:4,自引:0,他引:4  
本文综述了氨合成这一最重要的工业多相催化过程80 多年来的研究进展。介绍了氨合成熔铁催化剂、氨合成钌催化剂的发展以及对氨合成催化反应机理的不同看法。  相似文献   

20.
Crystalline solid materials are platforms for the development of effective catalysts and have shown vast benefits at the frontiers between homogeneous and heterogeneous catalysts. Typically, these crystalline solid catalysts outperformed their homogeneous analogs due to their high stability, selectivity, better catalytic activity, reusability and recyclability in catalysis applications. This point of view, comprising significant features of a new class of porous crystalline materials termed as metal‐organic frameworks (MOFs) engendered the attractive pathway to synthesize functionalized heterogeneous MOF catalysts. The present review includes the recent research progress in developing both hydrogen‐bond donating (HBD) MOF catalysts and MOF‐supported single‐site catalysts (MSSCs). The first part deals with the novel designs of urea‐, thiourea‐ and squaramide‐containing MOF catalysts and study of their crucial role in HBD catalysis. In the second part, we discuss the important classification of MSSCs with existing examples and their use in desired catalytic reactions. In addition, we describe the relative catalytic efficiency of these MSSCs with their homogeneous and similarly reported analogs. The precise knowledge of discussed heterogeneous MOF catalysts in this review may open the door for new research advances in the field of MOF catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号