首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The unimolecular reactivity of M(2+)(H(2)O)(2), M = Be, Mg, Ca, Sr, and Ba, is investigated by density functional theory. Dissociation of the complex occurs either by proton transfer to form singly charged metal hydroxide, MOH(+), and protonated water, H(3)O(+), or by loss of water to form M(2+)(H(2)O) and H(2)O. Charge transfer from water to the metal forming H(2)O(+) and M(+)(H(2)O) is not favorable for any of the metal complexes. The relative energetics of these processes are dominated by the metal dication size. Formation of MOH(+) proceeds first by one water ligand moving to the second solvation shell followed by proton transfer to this second-shell water molecule and subsequent Coulomb explosion. These hydroxide formation reactions are exothermic with activation energies that are comparable to the water binding energy for the larger metals. This results in a competition between proton transfer and loss of a water molecule. The arrangement with one water ligand in the second solvation shell is a local minimum on the potential energy surface for all metals except Be. The two transition states separating this intermediate from the reactant and the products are identified. The second transition state determines the height of the activation barrier and corresponds to a M(2+)-OH(-)-H(3)O(+) "salt-bridge" structure. The computed B3LYP energy of this structure can be quantitatively reproduced by a simple ionic model in which Lewis charges are localized on individual atoms. This salt-bridge arrangement lowers the activation energy of the proton-transfer reaction by providing a loophole on the potential energy surface for the escape of H(3)O(+). Similar salt-bridge mechanisms may be involved in a number of proton-transfer reactions in small solvated metal ion complexes, as well as in other ionic reactions.  相似文献   

2.
We investigated by means of molecular dynamics simulations the properties (structure, thermodynamics, ion transport, and dynamics) of the protic ionic liquid N,N-diethyl-N-methylammonium triflate (dema:Tfl) and of selected aqueous mixtures of dema:Tfl. This ionic liquid, a good candidate for a water-free proton exchange membrane, is shown to exhibit high ion mobility and conductivity. The radial distribution functions reveal a significant long-range structural correlation. The ammonium cations [dema](+) are found to diffuse slightly faster than the triflate anions [Tfl](-), and both types of ions exhibit enhanced mobility at higher temperatures, leading to higher ionic conductivity. Analysis of the dynamics of ion pairing clearly points to the existence of long-lived contact ion pairs. We also examined the effects of water through characterization of properties of dema:Tfl-water mixtures. Water molecules replace counterions in the coordination shell of both ions, thus weakening their association. As water concentration increases, water molecules start to connect with each other and then form a large network that percolates through the system. Water influences ion dynamics in the mixtures. As the concentration of water increases, both translational and rotational motions of [dema](+) and [Tfl](-) are significantly enhanced. As a result, higher vehicular ionic conductivity is observed with increased hydration level.  相似文献   

3.
The first electronic transition (?←X?) of liquid water was studied from the perspective of the hydration of cations by analyzing the attenuated total reflection far-ultraviolet (ATR-FUV) spectra of the Group I, II, and XIII metal nitrate electrolyte solutions. The ?←X? transition energies of 1 M electrolyte solutions are higher (Li(+): 8.024 eV and Cs(+): 8.013 eV) than that of pure water (8.010 eV) and linearly correlate with the Gibbs energies of hydration of the cations. The increases in the ?←X? transition energies are mostly attributable to the hydrogen bond formation energies of water molecules in the ground state induced by the presence of the cations. The deviation from the linear relation was observed for the high charge density cations, H(+), Li(+), and Be(2+), which reflects that the electronic energies in the excited states are also perturbed. Quantum chemical calculations show that the ?←X? transition energies of the water-cation complexes depend on the hydration structures of the cations. The calculated ?←X? transition energies of the water molecules hydrating high charge density cations spread more widely than those of the low charge density cations. The calculated transition energy spreads of the water-cation complexes directly correlate with the widths of the ?←X? transition bands measured by ATR-FUV spectroscopy.  相似文献   

4.
To gain a better understanding of how monovalent salt under physiological conditions affects plasma membranes, we have performed 200 ns atomic-scale molecular dynamics simulations of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipid bilayers. These two systems provide representative models for the outer and inner leaflets of the plasma membrane, respectively. The implications of cation-lipid interactions in these lipid systems have been considered in two different aqueous salt solutions, namely NaCl and KCl, and the sensitivity of the results on the details of interactions used for ions is determined by repeating the simulations with two distinctly different force fields. We demonstrate that the main effect of monovalent salt on a phospholipid membrane is determined by cations binding to the carbonyl region of a membrane, while chloride anions mostly stay in the water phase. It turns out that the strength and character of the cation-lipid interactions are quite different for different types of lipids and cations. PC membranes and Na+ ions demonstrate strongest interactions, leading to notable membrane compression. This finding was confirmed by both force fields (Gromacs and Charmm) employed for the ions. The binding of potassium ions to PC membranes (and the overall effect of KCl), in turn, was found to be much weaker mainly due to the larger size of a K+ ion compared to Na+. Furthermore, the effect of KCl on PC membranes was found to be force-field sensitive: The binding of a potassium ion was not observed at all in simulations performed with the Gromacs force-field, which seems to exaggerate the size of a K+ ion. As far as PE lipid bilayers are concerned, they are found to be influenced by monovalent salt to a significantly lesser extent compared to PC bilayers, which is a direct consequence of the ability of PE lipids to form both intra- and intermolecular hydrogen bonds and hence to adopt a more densely packed bilayer structure. Whereas for NaCl we observed weak binding of Na+ cations to the PE lipid-water interface, in the case of KCl we witnessed almost complete lack of cation binding. Overall, our findings indicate that monovalent salt ions affect lipids in the inner and outer leaflets of plasma cell membranes in substantially different ways.  相似文献   

5.
An integrated Feynman path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method has been used to investigate the kinetic isotope effects (KIEs) in the proton transfer reaction between nitroethane and acetate ion in water. In the present study, both nuclear and electronic quantum effects are explicitly treated for the reacting system. The nuclear quantum effects are represented by bisection sampling centroid path integral simulations, while the potential energy surface is described by a combined quantum mechanical and molecular mechanical (QM/MM) potential. The accuracy essential for computing KIEs is achieved by a FEP technique that transforms the mass of a light isotope into a heavy one, which is equivalent to the perturbation of the coordinates for the path integral quasiparticle in the bisection sampling scheme. The PI-FEP/UM method is applied to the proton abstraction of nitroethane by acetate ion in water through molecular dynamics simulations. The rule of the geometric mean and the Swain-Schaad exponents for various isotopic substitutions at the primary and secondary sites have been examined. The computed total deuterium KIEs are in accord with experiments. It is found that the mixed isotopic Swain-Schaad exponents are very close to the semiclassical limits, suggesting that tunneling effects do not significantly affect this property for the reaction between nitroethane and acetate ion in aqueous solution.  相似文献   

6.
We have investigated the solvation structure and migration kinetics of an excess proton and a hydroxide ion in water-ammonia mixed liquids of varying composition by means of ab initio molecular dynamics simulations. The excess proton is always found to be attached to an ammonia molecule to form the ammonium ion. Migration of the excess proton is found to occur very occasionally from one ammonia to the other but no proton transfer to a water molecule is observed during the entire simulations. Also, when the ammonium ion is solvated in water only, its hydrogen bond dynamics and rotation are found to occur at a faster rate than those in water-ammonia mixtures. For water-ammonia mixtures containing a proton less, the defect is found to stay like the hydroxide ion. For these systems, occasional proton transfer is found to occur only through the hydrogen bonded chains of water molecules in these water-ammonia mixtures. No proton transfer is found to take place from an ammonia molecule. The presence of ammonia molecules makes the realization of proper presolvated state of the hydroxide ion to accept a proton a more difficult process and, as a result, the rate of proton transfer and migration kinetics of the hydroxide ion in water-ammonia mixtures are found to be slower than that in liquid water and these rates are found to slow down further with increase of ammonia concentration.  相似文献   

7.
The permeation of hydrophobic, cylindrical nanopores by water molecules and ions is investigated under equilibrium and out-of-equilibrium conditions by extensive molecular-dynamics simulations. Neglecting the chemical structure of the confining pore surface, we focus on the effects of pore radius and electric field on permeation. The simulations confirm the intermittent filling of the pore by water, reported earlier under equilibrium conditions for pore radii larger than a critical radius R(c). Below this radius, water can still permeate the pore under the action of a strong electric field generated by an ion concentration imbalance at both ends of the pore embedded in a structureless membrane. The water driven into the channel undergoes considerable electrostriction characterized by a mean density up to twice the bulk density and by a dramatic drop in dielectric permittivity which can be traced back to a considerable distortion of the hydrogen-bond network inside the pore. The free-energy barrier to ion permeation is estimated by a variant of umbrella sampling for Na(+), K(+), Ca(2+), and Cl(-) ions, and correlates well with known solvation free energies in bulk water. Starting from an initial imbalance in ion concentration, equilibrium is gradually restored by successive ion passages through the water-filled pore. At each passage the electric field across the pore drops, reducing the initial electrostriction, until the pore, of radius less than R(c), closes to water and hence to ion transport, thus providing a possible mechanism for voltage-dependent gating of hydrophobic pores.  相似文献   

8.
An atomic force microscope (AFM) is used to study the adhesion between a silica sphere and a mica plate in pure water and solutions of monovalent cations (LiCl, NaCl, KCl, and CsCl). It is found that the adhesive force depends not only on the electrolyte concentration but also on the hydration enthalpy of cations and the contact time of the particle on the surface. Possible mechanisms by which the observed phenomena can be explained consistently are discussed extensively. It is suggested that the adhesive force is closely related to the structure of the layer of cations and water molecules adsorbed on the surfaces: the strong adhesive force is obtained when highly hydrated cations (Li(+), Na(+)) are adsorbed to form a thick but weakly adsorbed layer, while the weak adhesive force is observed when poorly hydrated cations (Cs(+), K(+)) are adsorbed to form a thin but strongly adsorbed layer. Copyright 2000 Academic Press.  相似文献   

9.
A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.  相似文献   

10.
In the recovery of acids from wastewaters or the regeneration of acids and bases from salts by electromembrane processes, the most important phenomenon which limits the current efficiency is the transport of protons through the anion-exchange membrane (AEM). In this work, the proton leakage through an AEM is studied with a system containing hydrochloric acid or sulfuric acid on the cathodic side and the mixture of acid with one homoanionic salt (Li+, Na+, K+, Cr3+, NH4+, (CH3)4N+ and (C2H5)4N+) on the anodic side. The proton leakage is quantified from the value of the proton transport number. The results are analyzed assuming that the rate determining step of proton leakage is the interfacial transfer reaction of protons from the aqueous anodic solution to the membrane. The proton leakage is enhanced by the polarizing power of the cation. The transfer of protons into the membrane seems to be catalyzed by the presence of a layer of adsorbed cations on the surface of the membrane. The presence of salt decreases the proton leakage but it is always greater with H2SO4 solutions compared to HCl solutions.  相似文献   

11.
Li Z  Niu T  Zhang Z  Feng G  Bi S 《The Analyst》2012,137(7):1680-1691
In this article we investigate the effect of monovalent cations (Li(+), Na(+), K(+), Cs(+)) on self-assembly of thiol-modified double-stranded DNA (ds-DNA) and single-stranded DNA (ss-DNA) on gold electrodes. Electrochemical characteristics (surface coverage, ion penetration and charge transfer) of ds-DNA and ss-DNA self-assembled monolayers (SAMs) formed with different monovalent cations are inspected based on six important interfacial parameters including surface coverage (Γ(m)), interfacial capacitance (C), phase angle (Φ(1 Hz)), ion transfer resistance (R(it)*), current density difference (Δj) and charge transfer resistance (R(ct)) from chronocoulometry (CC), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Three sections are included: (1) Investigation of the relationships of parameters (Γ(m), C, Φ(1 Hz), R(it)*, Δj and R(ct)) for ds-DNA-SAMs and ss-DNA-SAMs with cation types and concentrations; (2) confirmation and explanation of our experimental results combined with our recently proposed simple DNA model and literature reports; (3) exploration of the mechanism for the orders of monovalent cations (Li(+), Na(+), K(+), Cs(+)) on availing the adsorption of ds-DNA and ss-DNA molecules on gold based on their physicochemical parameters (ion size, solvation free energy and enthalpy, ion-water bond length and water exchange rate) and possible binding modes with DNA molecules. This work might provide a useful reference for understanding interactional mechanism of cations with DNA molecules.  相似文献   

12.
The dynamics of Keggin polyoxoanions in aqueous solution in the presence of monovalent cations is analyzed through molecular dynamics simulations. Together with structural information yielding the radial distribution functions of Li(+), Na(+), and K(+) with three polyoxometalates (POMs) bearing 3-, 4-, and 5- charges, the diffusion coefficient of these POMs is calculated. We found that the effect of the microscopic molecular details of the solvent is a key aspect to interpreting the structural and dynamic data because a competition between electrostatic interactions between the ions and the stability of the solvation shell is established. Furthermore, we show that solvent-shared structures weakly bound to the POM anion play a crucial role in the determination of the dynamic properties of the anion. The nature of these ion pairs, structurally characterized for the first time, is consistent with experimental data available.  相似文献   

13.
Curved carbon π surfaces have chemical and physical properties suitable for exploitation for chemical microencapsulation and the self-assembly of nanoscale materials. Advances will greatly benefit from more understanding of their host-guest interactions with guests such as metal cations. Here, quantitative predictions are made for the binding of metal cations to three prototypical surfaces using density functional theory calculations: the buckybowls C(20)H(10), C(30)H(10), and C(40)H(10). The focus was on finding the most favorable binding sites, assessing whether binding is more favorable inside or outside the bowl, and exploring factors influencing the binding site preference. Classes of cations studied included small and large monocations and cations with multiple charges: Na(+), Cs(+), NH(4)(+), Ba(+), Ba(2+), and La(3+). Factors found to favor inside binding were large ion size and high ion charge, suggesting that polarization interactions as well as short-range interactions are important in determining the preferred binding sites inside and outside these buckybowls. Unlike monocations, which at best have only a weak tendency toward encapsulation, the multiply charged cations Ba(2+) and La(3+) were found to have a strong driving force toward containment inside the bowls. Coulomb potentials were found to favor cation binding on the outside surface of the bowls, but cation microsolvation through polarization interactions presents a compensating factor that can tip the balance in favor of encapsulation. Knowledge of these factors will be a valuable tool in the design of nanocontainers and the diverse architecture possible with these structural elements.  相似文献   

14.
The proton activity inside the channels of zeolite L has been studied by investigating dye-loaded zeolite L crystals under different conditions, such as water content, nature of the counterions, and nature of the solvent. The discussion is made within the frame of three types of dye-loaded zeolite L systems, classified according to their ability to exchange matter (dyes, cations, solvent, and other small molecules) with the environment. The classification refers to dye-loaded zeolites. The term "closed" and "semi-open" characterize different possibilities of the channels to exchange small molecules, cations, and solvent molecules with the environment, but not dyes. The "open" systems also allow for dye exchange. UV-visible and fluorescence spectroscopy have been used to observe the proton activity inside the zeolite L channels. The influence of the proton activity on the luminescence of encapsulated dyes is discussed, special attention being given to luminescence quenching by excited-state protonation. Partially proton-exchanged zeolite L can be a superacid, whereas for the M-exchanged form (M: K(+), Li(+), Cs(+), Mg(2+), Ca(2+)) the pH ranges from about 2.5 to 3.5. For these last forms, the differences in pH are due to the acid-base reactions of the respective metal cations with water inside the zeolite. Finally, we describe an easy experimental procedure that can be used to tune the proton activity inside the zeolite L to a considerable extent.  相似文献   

15.
An amperometric sensor with a single working electrode for simultaneous determination of electro-inactive anions and cations, e.g. SO4(2-), Cl(-), NO3(-), Na(+), NH4(+), K(+), Mg(2+) and Ca(2+), was designed as a detector in ion chromatography. The modification of its working golden electrode was based on the incorporation of dodecyl sulfate into polydiphenylamine by electropolymerization of diphenylamine in the presence of sodium dodecylsulfate. In ion-exclusion/cation-exchange chromatography, a set of well defined peaks of these anions and cations was obtained at the working potential, +1.35 V (vs. saturated calomel electrode) using a citric acid solution as eluent. The common anions and cations in mineral water samples were determined using this ion-chromatographic system with satisfactory results.  相似文献   

16.
Motivated by the long-term goal of theoretically analyzing long-range proton transfer (PT) kinetics in biomolecular pumps, researchers made a number of technical developments in the framework of quantum mechanics-molecular mechanics (QM/MM) simulations. A set of collective reaction coordinates is proposed for characterizing the progress of long-range proton transfers; unlike previous suggestions, the new coordinates can describe PT along highly nonlinear three-dimensional pathways. Calculations using a realistic model of carbonic anhydrase demonstrated that adiabatic mapping using these collective coordinates gives reliable energetics and critical geometrical parameters as compared to minimum energy path calculations, which suggests that the new coordinates can be effectively used as reaction coordinate in potential of mean force calculations for long-range PT in complex systems. In addition, the generalized solvent boundary potential was implemented in the QM/MM framework for rectangular geometries, which is useful for studying reactions in membrane systems. The resulting protocol was found to produce water structure in the interior of aquaporin consistent with previous studies including a much larger number of explicit solvent and lipid molecules. The effect of electrostatics for PT through a membrane protein was also illustrated with a simple model channel embedded in different dielectric continuum environments. The encouraging results observed so far suggest that robust theoretical analysis of long-range PT kinetics in biomolecular pumps can soon be realized in a QM/MM framework.  相似文献   

17.
The complexes formed by alkali metal cations (Cat(+) = Li(+), Na(+), K(+), Rb(+)) and singly charged tryptic peptides were investigated by combining results from the low-energy collision-induced dissociation (CID) and ion mobility experiments with molecular dynamics and density functional theory calculations. The structure and reactivity of [M + H + Cat](2+) tryptic peptides is greatly influenced by charge repulsion as well as the ability of the peptide to solvate charge points. Charge separation between fragment ions occurs upon dissociation, i.e. b ions tend to be alkali metal cationised while y ions are protonated, suggesting the location of the cation towards the peptide N-terminus. The low-energy dissociation channels were found to be strongly dependant on the cation size. Complexes containing smaller cations (Li(+) or Na(+)) dissociate predominantly by sequence-specific cleavages, whereas the main process for complexes containing larger cations (Rb(+)) is cation expulsion and formation of [M + H](+). The obtained structural data might suggest a relationship between the peptide primary structure and the nature of the cation coordination shell. Peptides with a significant number of side chain carbonyl oxygens provide good charge solvation without the need for involving peptide bond carbonyl groups and thus forming a tight globular structure. However, due to the lack of the conformational flexibility which would allow effective solvation of both charges (the cation and the proton) peptides with seven or less amino acids are unable to form sufficiently abundant [M + H + Cat](2+) ion. Finally, the fact that [M + H + Cat](2+) peptides dissociate similarly as [M + H](+) (via sequence-specific cleavages, however, with the additional formation of alkali metal cationised b ions) offers a way for generating the low-energy CID spectra of 'singly charged' tryptic peptides.  相似文献   

18.
Oxidative damage to DNA, implicated in mutagenesis, aging, and cancer, follows electron loss that generates a radical cation that migrates to a guanine, where it may react with water to form 8-oxo-7,8-dihydroguanine (8-OxoG). Molecular dynamics and ab initio quantum simulations on a B-DNA tetradecamer reveal activated reaction pathways that depend on the local counterion arrangement. The lowest activation barrier, 0.73 eV, is found for a reaction that starts from a configuration where a Na(+) resides in the major groove near the N7 atoms of adjacent guanines, and evolves through a transition state where a bond between a water oxygen atom and a carbon atom forms concurrently with displacement of a proton toward a neighboring water molecule. Subsequently, a bonded complex of a hydronium ion and the nearest backbone phosphate group forms. This counterion-assisted proton shuttle mechanism is supported by experiments exploiting selective substitution of backbone phosphates by methylphosphonates.  相似文献   

19.
Changed ion hydration properties near surfaces, proteins, and deoxyribose nucleic acid have been reported before in the literature. In the present work, we extend this work to carbohydrates: We have performed classical-mechanical molecular dynamics simulations to study solvation properties of simple cations of biological relevance (Na(+),K(+),Mg(2+),Ca(2+)) in explicit water, near single and multiple oligosaccharides as glycocalyx models. We find that our oligosaccharides prefer direct contact with K(+) over Na(+), but that the Na(+) contacts are longer lived. These interactions also lead to strong but short-lived changes in oligosaccharide conformations, with oligosaccharides wrapping around K(+) with multiple contacts. These findings may have implications for current hypotheses on glycocalyx functions.  相似文献   

20.
We report a molecular dynamics study of cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)X(3))(2)Co](-) (XCD(-)) commonly used in liquid-liquid extraction (X = H, Me, Cl, or Br), showing that these anions, although lacking the amphiphilic topology, behave as anionic surfactants. In pure water, they display "hydrophobic attractions", leading to the formation of aggregates of different sizes and shapes depending on the counterions. When simulated at a water/"oil" interface, the different anions (HCD(-), MeCD(-), CCD(-), and BrCD(-)) are found to be surface active. As a result, the simulated M(n+) counterions (M(n+) = Na(+), K(+), Cs(+), H(3)O(+), UO(2)(2+), Eu(3+)) concentrate on the aqueous side of the interface, forming a "double layer" whose characteristics are modulated by the hydrophobic character of the anion and by M(n+). The highly hydrophilic Eu(3+) or UO(2)(2+) cations that are generally "repelled" by aqueous interfaces are attracted by dicarbollides near the interface, which is crucial as far as the mechanism of assisted cation extraction to the oil phase is concerned. These cations interact with interfacial XCD(-) in their fully hydrated Eu(H(2)O)(9)(3+) and UO(2)(H(2)O)(5)(2+) forms, whereas the less hydrophilic monocharged cations display intimate contacts via their X substituents. The results obtained with the TIP3P and OPLS models for the solvents are confirmed with other water models (TIP5P or a polarizable 4P-Pol water) and with more polar "oil" models. The importance of interfacial phenomena is further demonstrated by simulations with a high oil-water ratio, leading to the formation of a micelle covered with CCD's. We suggest that the interfacial activity of dicarbollides and related hydrophobic anions is an important feature of synergism in liquid-liquid extraction of hard cations (e.g., for nuclear waste partitioning).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号