共查询到20条相似文献,搜索用时 0 毫秒
1.
A.S. Vyacheslavov A.A. Eliseev I.V. Kolesnik A.V. Lukashin P. Goernert Yu.V. Maksimov I.P. Suzdalev Yu.D. Tretyakov 《Progress in Solid State Chemistry》2005,33(2-4):171-178
Here we report the synthesis and magnetic characterization of iron-containing nanocomposites based on mesoporous aluminosilicates (MAS). MAS with Al:Si ratio equal to 1:15 was synthesized by a two-step hydrothermal treatment. The chemical composition and structure of the matrix were determined by chemical analysis, TGA, SAXS and adsorption of nitrogen at 77 K. The intercalation of iron into the channels was performed either by cationic exchange or by soaking the initial matrix in Fe(CO)5. Reduction/decomposition of the complex was carried out by thermal treatment in a hydrogen flow. The nanocomposites obtained were characterized by XRD, TEM, Mössbauer spectroscopy and magnetic measurements. It was shown that the first method does not give any magnetic phases at nanolevel. The second method results in the formation of magnetic iron-containing nanowires (with diameter <2 nm and length over 30 nm) in a mesoporous matrix, which possess blocking temperatures over 300 K and coercivity up to 31,000 A/m at room temperature. 相似文献
2.
3.
Hongxian Han Michael N. Paddon-Row Russell F. Howe 《Research on Chemical Intermediates》2008,34(5-7):551-564
EPR spectroscopy has been used to investigate spontaneous and/or photo-induced electron transfer between adsorbed organic molecules and the mesoporous aluminosilicate MCM-41 host. Spontaneous electron transfer occurs from the host to electron acceptor molecules with sufficiently favourable reduction potentials (TCNE, TCNQ, 1,4-benzoquinone, 1,4-naphthaquinone and 1,4-anthraquinone), provided the MCM-41 contains aluminium and the radical anion yield correlates with the aluminium content of the host. The semiquinone radical anions are interacting strongly with exposed Al3+ sites, whereas the TCNE and TCNQ radical anions are loosely bound and can be washed from the host. Radical cation formation is observed when electron donor molecules with favourable oxidation potentials are adsorbed in MCM-41 containing aluminium, and the radical cations formed interact with exposed Al3+ sites. This work shows that aluminium-containing MCM-41 contains both electron donating and electron accepting sites which may intervene in intra-molecular charge separation processes in adsorbed organic molecules. 相似文献
4.
5.
6.
N. G. Grigor’eva A. M. Suleimanova M. R. Agliullin B. I. Kutepov 《Russian Journal of Applied Chemistry》2014,87(6):773-779
The catalytic properties of zeolites HY, HBeta, and HZSM-12 and of mesoporous amorphous aluminosilicate in liquid-phase esterification of aliphatic (monobasic C1–C18, dibasic C6, C10) and aromatic (benzoic, trimellitic, phthalic) carboxylic acids with butanol were studied. Zeolite HBeta appeared to be the most active catalyst. Procedures were developed for preparing esters in the presence of zeolitic catalyst HBeta, ensuring 100% selectivity of ester formation at 90–98% conversion of the acid. 相似文献
7.
Enhancing stability and oxidation activity of cytochrome C by immobilization in the nanochannels of mesoporous aluminosilicates 总被引:4,自引:0,他引:4
Lee CH Lang J Yen CW Shih PC Lin TS Mou CY 《The journal of physical chemistry. B》2005,109(25):12277-12286
Hydrothermally stable and structrurally ordered mesoporous and microporous aluminosilicates with different pore sizes have been synthesized to immobilize cytochrome c (cyt c): MAS-9 (pore size 90 A), MCM-48-S (27 A), MCM-41-S (25 A), and Y zeolites (7.4 A). The amount of cyt c adsorption could be increased by the introduction of aluminum into the framework of pure silica materials. Among these mesoprous silicas (MPS), MAS-9 showed the highest loading capacity due to its large pore size. However, cyt c immobilized in MAS-9 could undergo facile unfolding during hydrothermal treatments. MCM-41-S and MCM-48-S have the pore sizes that match well the size of cyt c (25 x 25 x 37 A). Hence the adsorbed cyt c in these two medium pore size MPS have the highest hydrothermal stability and overall catalytic activity. On the other hand, the pore size of NaY zeolite is so small that cyt c is mostly adsorbed only on the outer surface and loses its enzymatic activity rapidly. The improved stability and high catalytic activity of cyt c immobilized in MPS are attributed to the electrostatic attraction between the pore surface and cyt c and the confinement provided by nanochannels. We further observed that cyt c immobilized in MPS exists in both high and low spin states, as inferred from the ESR and UV-vis studies. This is different from the native cyt c, which shows primarily the low spin state. The high spin state arises from the replacement of Met-80 ligands of heme Fe (III) by water or silanol group on silica surface, which could open up the heme groove for easy access of oxidants and substrates to iron center and facilitate the catalytic activity. In the catalytic study, MAS-9-cyt c showed the highest specific activity toward the oxidation of polycyclic aromatic hydrocarbons (PAHs), which arises from the fast mass transfer rate of reaction substrate due to its large pore size. For pinacyanol (a hydrophilic substrate), MCM-41-S-cyt c and MCM-48-S-cyt c showed higher specific activity than NaY-cyt c and MAS-9-cyt c. The result indicated that cyt c embedded in the channels of MCM-41-S and MCM-48-S was protected against unfolding and loss of activity. By increasing the concentration of the spin trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in ESR experiments, we showed that cyt c catalyzes a homolytic cleavage of the O-O bond of hydroperoxide and generates a protein cation radical (g = 2.00). Possible mechanisms for MPS-cyt c catalytic oxidation of hydroperoxides and PAHs are proposed based on the spectroscopic characterizations of the systems. 相似文献
8.
Metal nanoparticles (NP) and mesoporous (MP) oxides are complementary materials, since the size scale of pores in MP oxides matches that of NP and both systems have potential applications in similar fields. Besides, nanocomposites obtained through their combination possess not only the intrinsic properties of each component, but also new features derived from the synergy between them, mainly due to the high interfacial area between the metal and the oxide. Thus, new optical, catalytic and sensing properties can be achieved that are not easily available from the individual components. In this review, we focus our attention on such NP@MP composites, not only from the point of view of the most common synthesis pathways but also briefly describing their applications in fields as diverse as (photo)catalysis, sensing, photochromism and other optical properties, as well as patterning. 相似文献
9.
S. Yu. Khashirova Yu. I. Musaev A. K. Mikitaev Yu. A. Malkanduev M. Kh. Ligidov 《Polymer Science Series B》2009,51(9-10):377-382
Hybrid nanostructures (organomodified montmorillonite) have been synthesized on the basis of activated Na+-montmorillonite and new water-soluble ionogenic Na+-montmorillonite monomers containing quaternary ammonium guanidine cations. The structure and properties of poly(guanidine methacrylate) nanocomposites have been studied. It has been shown that these compounds efficiently adsorb heavy metals and exhibit a prolonged biocide effect due to the presence of quaternary ammonium guanidine cations. 相似文献
10.
Gee BA 《Magnetic resonance in chemistry : MRC》2004,42(1):30-38
The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2. 相似文献
11.
A mesoporous Co(3)O(4) core/mesoporous silica shell composite with a variable shell thickness of 10-35 nm was fabricated by depositing silica on Co(3)O(4) superlatticed particles. The Brunauer-Emmett-Teller (BET) surface area of the composite with a shell thickness of ca. 2.0 nm was 238.6 m(2)/g, which varied with the shell thickness, and the most frequent pore size of the shell was ca. 2.0 nm. After the shell was eroded with hydrofluoric acid, mesoporous Co(3)O(4) particles with a pore size of ca. 8.7 nm could be obtained, whose BET surface area was 86.4 m(2)/g. It is proposed that in the formation of the composite the electropositive cetyltrimethylammonium bromide (CTAB) micelles were first adsorbed on the electronegative Co(3)O(4) particle surface, which directed the formation of the mesoporous silica on the Co(3)O(4) particle surface. Electrochemical measurements showed that the core/shell composites exhibited a higher discharge capacity compared with that of the bare Co(3)O(4) particles. 相似文献
12.
Vargas-Florencia D Furó I Corkery RW 《Langmuir : the ACS journal of surfaces and colloids》2008,24(9):4827-4832
The pore system of a highly swollen, block-copolymer-templated, polyhedral silica foam material is investigated by a combination of transmission electron microscopy, nitrogen sorption, and NMR cryoporometry. The adsorption-desorption hysteresis and melting-freezing hysteresis data recorded by the respective methods provide pore volume and access channel sizes that virtually coincide for the two used methods. This provides a consistent picture where polyhedral foam cells of 60-70 nm diameter are interconnected by cylindrical access channels with several characteristic sizes for the latter. 相似文献
13.
Journal of Sol-Gel Science and Technology - Multifunctional magnetic mesoporous nanocomposites are promising materials to remove the various pollutants from water due to the remarkable properties... 相似文献
14.
Akhmedov V. M. Melnikova N. E. Babayeva A. Z. Nurullayev G. G. Akhmedov Vs. M. Tagiyev D. B. 《Russian Chemical Bulletin》2021,70(4):677-684
Russian Chemical Bulletin - New platinum nanocomposites were synthesized by chemical reduction of H2PtCl6?6H2O in situ with a methanol—water mixture using mesoporous carbon nitride as a... 相似文献
15.
Renata Barbosa Tatianny S. Alves Edcleide M. Araújo Tomás. J. A. Mélo Giovanni Camino Alberto Fina Edson N. Ito 《Journal of Thermal Analysis and Calorimetry》2014,115(1):627-634
High-density polyethylene/modified bentonite clay/polar compatibilizer nanocomposites were prepared through the melt intercalation process. The clay was organophilizated using different percentages of quaternary ammonium salt 100, 125, and 150 % based cation exchange capacity of the clay. The nanocomposites were prepared in a counter-rotating twin-screw extruder and then specimens were injection molded. For the evaluation of flammability of the test system was used for burning in the horizontal position according to the norm (Underwriters Laboratories, UL94HB) and to the method of cone calorimeter. The thermal behavior of nanocomposites was evaluated by thermogravimetry and X-ray diffraction techniques, and transmission electron microscopy were used to characterize the morphology and analyze the degree of expansion of the clays prepared and the degree of exfoliation of nanocomposites. It was observed that the percentage of ammonium salt and the compatibilizer polar influence on the final properties of the systems and consequently improving the thermal stability and reducing the flammability of the matrix. 相似文献
16.
Rheology of sepiolite-based epoxy suspensions as well as morphology and dynamic mechanical properties of the corresponding nanocomposites are discussed in this paper. The influence of the type of sepiolite used, i.e. non-modified, aminosilane and glycidylsilane surface modified, and of the process developed to prepare the epoxy suspensions were investigated. Except for low amount of filler, a shear thinning behavior was observed in the others sepiolite-based epoxy suspensions. The interactions developed between the sepiolite and the epoxy matrix are responsible for the magnitude of the shear thinning effect and are related to the morphology of the nanocomposites. The best dispersion of sepiolite was achieved using either an emulsion process or a glycidyl functionalized sepiolite. 相似文献
17.
Cerium-doped mesoporous BaTiO3/TiO2 nanocomposites: structural,optical and photocatalytic properties
Khalyavka T. A. Shcherban N. D. Shymanovska V. V. Manuilov E. V. Permyakov V. V. Shcherbakov S. N. 《Research on Chemical Intermediates》2019,45(8):4029-4042
Research on Chemical Intermediates - Nanoscale composite materials based on cerium, barium titanate and titanium dioxide were synthesized by thermal hydrolysis. The obtained individual TiO2, BaTiO3... 相似文献
18.
以一种新型Gemini表面活性剂作为介孔模板剂通过转晶过程合成介孔ZSM-5分子筛 总被引:2,自引:0,他引:2
将一种新型Gemini表面活性剂,丙撑基双(十八烷基二甲基氯化铵)[C18H37(CH3)2–N+–(CH2)3–N+–(CH3)2C18H37]Cl2(C18-3-18),作为介孔模板剂用于水热法合成介孔ZSM-5分子筛.结果表明,在130 oC低温晶化即可高效合成介孔ZSM-5分子刷.C18-3-18的加入量可影响到所合成介孔ZSM-5分子筛的相对结晶度和织构性质,它的形成遵从一个转晶过程.在合成初期,凝胶中介孔模板剂C18-3-18的使用导向了介孔材料的生成;随后在TPABr的模板作用下,介孔材料慢慢转晶生成具有MFI结构的介孔ZSM-5;然后所合成的介孔ZSM-5晶粒进一步长大并聚集形成块状颗粒,同时产生晶间介孔.C18-3-18作为介孔导向剂不仅可用于合成介孔ZSM-5分子筛,也可用于其它介孔分子筛的合成中. 相似文献
19.
Topological design of mesoporous silica materials, pore architecture, pore size, and morphology are currently major issues in areas such as catalytic conversion of bulky molecules, adsorption, host-guest chemistry, etc. In this sense, we discuss the pore size-controlled mesostructure, framework functionalization, and morphology control of organic-inorganic hybrid mesoporous silicas by which we can improve the applicability of mesoporous materials. First, we explain that the sizes of hexagonal- and cubic-type pores in organic-inorganic hybrid mesoporous silicas are well controlled from 24.3 to 98.0 A by the direct micelle-control method using an organosilica precursor and surfactants with different alkyl chain lengths or triblock copolymers as templates and swelling agents incorporated in the formed micelles. Second, we describe that organic-inorganic hybrid mesoporous materials with various functional groups form various external morphologies such as rod, cauliflower, film, rope, spheroid, monolith, and fiber shapes. Third, we discuss that transition metals (Ti and Ru) and rare-earth ions (Eu(3+) and Tb(3+)) are used to modify organic-inorganic hybrid mesoporous silica materials. Such hybrid mesoporous silica materials are expected to be applied as excellent catalysts for organic reactions, photocatalysis, optical devices, etc. 相似文献
20.
Mikael Trollss Bjrn Atthoff Hans Claesson James L. Hedrick 《Journal of polymer science. Part A, Polymer chemistry》2004,42(5):1174-1188
The synthesis and characterization of dendritic homopolymers and block copolymers of ?‐caprolactone and lactide (L ‐lactide and racemic lactide) were performed with multifunctional initiators in combination with living polymerization and the selective placement of branching junctures in a divergent growth strategy. A hexahydroxy‐functional 2,2‐bis(hydroxymethyl) propionic acid derivative was used as an initiator for the stannous‐2‐ethylhexanoate‐catalyzed living ring‐opening polymerization of ?‐caprolactone, L ‐lactide, and racemic L ,D ‐lactide. Branching junctions at the chain ends were introduced with benzylidene‐protected 2,2‐bis(hydroxymethyl) propionic acid. Subsequent generations were then polymerized, after deprotection, from these star‐shaped macroinitiators. Successive chain end capping and initiation produced three generations of polymers with molecular weights in excess of 130,000 g/mol and narrow polydispersities (<1.20). It was possible to prepare diblock and triblock copolymers with phase‐separated morphologies, and with L ‐lactide or D ,L ‐lactide, semicrystalline and amorphous morphologies were demonstrated. The polymers were characterized by 1H NMR, 13C NMR, size exclusion chromatography, and differential scanning calorimetry. The compositions of the block copolymers and the conformational structures of the optically active polymers were also confirmed by optical rotation measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1174–1188, 2004 相似文献