首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
热处理条件对热蒸镀WO3薄膜结构的影响   总被引:4,自引:0,他引:4  
采用高真空热蒸发沉积技术在硅单晶Si(111)衬底上沉积了WO3薄膜,借助化学刻蚀,SEM,XRD和Raman光谱分析等手段,了不同的热处理条件对WO3薄膜结构的影响,结果表明,在真空条件下或干燥Ar气氛条件下对薄膜进行退火热处理有利于控制薄膜晶粒的生长,同时有利于增强薄膜的稳定性。  相似文献   

2.
纳米多孔 WO3薄膜的溶胶-凝胶制备与热处理   总被引:10,自引:1,他引:10  
以金属W粉为无机原料,采用溶胶-凝胶技术,结合浸渍镀膜方法,制备出纳米多孔WO3薄膜,研究了热处理对薄膜性能的影响。采用原子力显微镜、红外光谱仪、可见光分光光度计、椭偏仪等仪器测量了薄膜的特性。实验表明:热处理使得薄膜致密,折射率增大(从1.77增加至2.03),厚度减小,WO3颗粒增大;WO3结构发生变化,桥键W-O-W吸收逐渐减弱,且向低波数方向移动,共角W-O-W键吸收越来越强。这些变化归因于热处理导致的WO3颗粒形状、团聚状态的变化以及应力键的产生。  相似文献   

3.
采用溶胶-凝胶法制备WO3电致变色薄膜,并利用正交设计法对实验进行设计,采用循环伏安特性法、分光光度法和扫描电镜(SEM)对薄膜的变色效果和表面形貌进行了研究.据此找出最佳实验条件为W粉用量4 g、H2O2加入量20 mL以及无水乙醇用量10 mL,此时制得的WO3电致变色薄膜的变色响应时间最短为6 s,具有较均一的表面形貌和高的变色效率.  相似文献   

4.
掺钯WO3薄膜的气致变色性能   总被引:5,自引:0,他引:5  
以钨粉和双氧水为主要原料,采用溶胶-凝胶法制备了WO3气致变色薄膜,研究了WO3薄膜的结构和气致变色性能,结果表明用此种方法制备的WO3薄膜具有良好的气致变色特性。  相似文献   

5.
研究了热处理对电子束蒸发法制备的TiO2薄膜结构和表面形貌的影响。利用X射线衍射仪和原子力显微镜,检测了TiO2薄膜的晶体结构和表面形貌。实验结果显示:沉积态TiO2薄膜为非晶态;低温(400℃以下)退火TiO2薄膜开始向锐钛矿相转变;高温退火(850℃以下)TiO2薄膜由锐钛矿向金红石相转变。  相似文献   

6.
采用热蒸镀法在氟掺杂的锡氧化物(fluorine-doped tin oxide,FTO)导电玻璃衬底上沉积了一层WO3薄膜,运用X线衍射(XRD)、扫描电子显微镜(SEM)和原子力显微镜(AFM)等手段对样品进行表征,并运用紫外-可见光谱法表征了薄膜样品的电致变色性能.结果表明,该氧化钨薄膜在外加电压作用下,从褪色态(+0.9 V)到着色态(-2.0 V),颜色由淡蓝色变为不透明的深蓝色,光透过率(波长为632.8 nm)由~72%下降为~0%,光学调节幅度高达72%,光密度(optical density,OD)变化量达到3,着色/褪色响应速度分别为30/20 s,循环(-1.8 V/+0.8 V)30周期后变色性能保持良好,综合性能优于目前文献报道.由于该法制备的氧化钨薄膜电致变色综合性能突出,特别是光密度变化量大,在变色玻璃、智能窗户等环保节能领域将有广泛的应用前景.  相似文献   

7.
研究了阶跃加压阳极氧化法在金属钨基底上制备具有多层纳米孔结构形貌的WO3薄膜的工艺,主要研究了阳极氧化条件对生成纳米孔结构的影响及热处理制度对样品形貌和结构的影响.结果表明:在60V电压和20℃反应温度条件下,在含质量分数为005%NH4F的电解液中阳极氧化20min得到的样品表面,具有形貌规则的自组装纳米多层网孔结构,且排列紧密.此外,将阳极氧化制得的样品以5℃/min的速率升温至450℃并保温3h,可使生成的无定形氧化钨薄膜在保持多孔结构形貌基本不变的条件下晶化.  相似文献   

8.
以钨粉和正硅酸乙酯为原料 ,采用溶胶凝胶技术和旋转镀膜方法 ,在玻璃衬底上制备出了气致变色WO3 SiO2 纳米复合薄膜 .采用椭偏仪、场发射扫描电子显微镜 (FE SEM )、红外光谱仪以及可见光分光光度计等对不同温度热处理的WO3 SiO2 复合薄膜及WO3 薄膜的特性进行了分析 .研究结果表明 :掺杂SiO2 会使WO3 薄膜厚度增大 ,折射率下降 ,表面平整度降低 ,颗粒尺寸增大 ;经高温热处理的WO3 SiO2 复合薄膜具有良好的气致变色能力  相似文献   

9.
以钨粉和双氧水为主要原料,采用溶胶-凝胶法制备了WO3纳米薄膜,并用磁控溅射法在该WO3薄膜表面溅射掺杂了催化剂Pt。研究了该Pt/WO3纳米薄膜的结构和氢敏性能,结果表明,用此种方法制备的WO3基掺Pt薄膜具有良好的氢敏特性;平均膜厚160nm;薄膜经400℃以下退火处理后是非晶态结构,表面疏松多孔,氢敏效果好;经400℃以上退火处理后呈晶态结构,表面粗糙致密,氢敏效果差;Pt掺杂量对薄膜的氢敏效果有影响,掺杂量越多,氢敏效果越差。  相似文献   

10.
在室温下用溶胶-凝胶(sol-gel)法制备了WO3-SiO2复合薄膜,通过改变氢气体积分数、催化剂浓度及热处理温度等实验因素,对薄膜的气致变色性能进行了测试,实验结果表明,将铂以K2PtCl4形式掺入WO3-SiO2混合溶胶中进行提拉成膜,经适当的热处理后可以获得性能稳定且具有良好气致变色性能的优质薄膜。  相似文献   

11.
采用直流反应磁控溅射设备制备WO3薄膜,对一组温度在47~400℃范围制成的WO3薄膜进行恒电流的电化学循环试验;利用紫外-可见-近红外分光光度计测试WO3薄膜的电色性能。结果表明,染色后WO3薄膜的光学吸收,以及染色效率在波长为1 000~2 500 nm的范围内,温度400℃以下,随镀膜温度的升高而提高。分析认为,由于薄膜在300℃开始进入结晶态,350℃以上结晶化程度增加,从而在高温范围(350~400℃),光学与电化学特性上的改变是由于薄膜的结晶度的增加而导致的。在本实验中,注入电量为10 mC/cm2,可使光学可控量在太阳光谱范围内保持相当稳定,而这种可控量已经能够很好地满足电色应用的需求。本研究为在太阳光谱范围内更有效地利用WO3薄膜的电色性能提供实验依据。  相似文献   

12.
介绍了用电子束蒸发制作WO3气敏薄膜、溅射掺Au、膜的热处理工艺以及对H2S气体的敏感特性测量的初步结果.着重讨论了WO3膜的稳定化过程.  相似文献   

13.
本文叙述了一种自动道路交通参数采集系统,该系统可采集道路的交通流量,车头距,速度,占有率和密度等交通参数,并分析了这种参数互相间的关系以及如何利用这些参数判定道路的运行状况。  相似文献   

14.
在不同氧浓度下,采用直流反应磁控溅射技术在玻璃基片上制备了Ti掺杂的WO3薄膜并在450℃退火。用X射线衍射(XRD)、分光光度计、台阶仪等对薄膜的结构和光学性质进行表征,分析了不同氧浓度对气敏薄膜的透光率、微结构及光学带隙的影响。结果表明,氧浓度增大,沉积速率越慢,膜厚度减小,薄膜的平均晶粒尺寸增大,晶面间距增大;透射率曲线随着氧浓度的增加逐渐向短波方向移动,表明薄膜的光学带隙宽度随氧浓度的增大而变大。  相似文献   

15.
纳米三氧化钨薄膜是一种重要的功能材料,因其表现出优良的电致变色、气致变色等性能而得到深入研究及应用,但有些指标还有待改善。本文综述了掺杂对WO3薄膜在电致变色和气致变色两方面的影响,并对今后研究提出展望。  相似文献   

16.
氧浓度对磁控溅射Ti/WO3薄膜光学性能的影响   总被引:1,自引:1,他引:0  
在不同氧浓度下,采用直流反应磁控溅射技术在玻璃基片上制备了Ti掺杂的WO3 薄膜并在450 ℃退火.用X射线衍射(XRD)、分光光度计、台阶仪等对薄膜的结构和光学性质进行表征,分析了不同氧浓度对气敏薄膜的透光率、微结构及光学带隙的影响.结果表明,氧浓度增大,沉积速率越慢,膜厚度减小,薄膜的平均晶粒尺寸增大,晶面间距增大;透射率曲线随着氧浓度的增加逐渐向短波方向移动,表明薄膜的光学带隙宽度随氧浓度的增大而变大.  相似文献   

17.
胡增顺 《开封大学学报》2010,24(4):87-89,96
基于朗道-德文希尔(Landau-Devonshire)平均场热力学理论,计算并阐述了在非对称的边界条件下外延生长的铁电存储材料BaTiO3薄膜的极化特性,特别研究了外推长度在薄膜由顺电相到铁电相的相变中所表现出来的重要作用,得出铁电薄膜的极化特性及其分布强烈地依赖于外推长度的取值,揭示了外推长度在铁电薄膜的铁电相变中的物理本质.  相似文献   

18.
通过喷雾热解获得CdS薄膜,水热法合成CdS纳米晶,在氮气中做了退火处理,发现CdS膜的吸收边随退火温度升高而移动;经暗电阻与温度关系测试,发现CdS薄膜和纳米晶的激活能存在极小值,用载流子衰减时间的变化很好地解释了其缘由;室温喇曼谱中观察到CdS的两个特征峰.  相似文献   

19.
采用磁控溅射方法在玻璃基片上制备了[BN/CoPt]n/Ag薄膜,并分别在550℃和600℃各退火30min。结果表明,退火温度对CoPt薄膜的磁性和结构影响很大。当退火温度为550℃时,薄膜就已经发生了有序相变,且薄膜垂直取向;退火温度增加到600℃后,薄膜大部分了发生了有序相变,并且垂直取向很高,薄膜垂直矫顽力高达10.7kOe,平行矫顽力仅为5.99kOe。适当的退火温度不仅有利于薄膜的有序相变,而且能提高薄膜的垂直取向程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号