首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The nickel-base alloy Inconel 718 exhibits a strength-differential, that is, a different plastic flow behavior in uniaxial tension and uniaxial compression. A phenomenological viscoplastic model founded on thermodynamics has been extended for material behavior that deviates from classical metal plasticity by including all three stress invariants in the threshold function. The model can predict plastic flow in isotropic materials with or without a flow stress asymmetry as well as with or without pressure dependence. Viscoplastic material parameters have been fit to pure shear, uniaxial tension, and uniaxial compression experimental results at 650°°C. Threshold function material parameters have been fit to the strength-differential. Four classes of threshold functions have been considered and nonproportional loading of hollow tubes, such as shear strain followed by axial strain, has been used to select the most applicable class of threshold function for the multiaxial model as applied to Inconel 718 at 650 °C. These nonproportional load paths containing corners provide a rigorous test of a plasticity model, whether it is time-dependent or not. A J2J3 class model, where J2 and J3 are the second and third effective deviatoric stress invariants, was found to agree the best with the experimental results.  相似文献   

2.
The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 107 s−1 has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model’s implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the α-to-ε phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.  相似文献   

3.
Prediction of 42CrMo steel flow stress at high temperature and strain rate   总被引:2,自引:0,他引:2  
The compressive deformation behavior of 42CrMo steel was investigated at temperatures ranging from 850 to 1150 °C and strain rates from 0.01 to 50 s−1 on Gleeble-1500 thermo-simulation machine. Based on the classical stress–dislocation relation and the kinematics of the dynamic recrystallization, the flow stress constitutive equations of the work hardening-dynamical recovery period and dynamical recrystallization period were established for 42CrMo steel, respectively. The stress–strain curves of 42CrMo steel predicted by the established models are in good agreement with experimental results when the strain rate is relatively low. So, the proposed deformation constitutive equations can be used to establish the hot formation processing parameters for 42CrMo steel.  相似文献   

4.
Concrete is a material that is sensitive to the rate of loading. Understanding the dynamic behavior of concrete under various circumstances is an issue of great significance for applications in civilian and military engineering. Hence, an experimental investigation on the dynamic mechanical properties of the reactive powder concrete (RPC) was conducted using the split-Hopkinson pressure bar (SHPB). The specimens were made with different steel fibre volume fractions and the strain rate ranged from 101 s−1 to 103 s−1. The results show the obvious rate-dependent mechanical behavior exists for RPC. Moreover, the different of the characteristic of energy absorbed are compared.  相似文献   

5.
Tungsten/copper (W/Cu) particle reinforced composites were used to investigate the scaling effects on the deformation and fracture behaviour. The effects of the volume fraction and the particle size of the reinforcement (tungsten particles) were studied. W/Cu-80/20, 70/30 and 60/40 wt.% each with tungsten particle size of 10 μm and 30 μm were tested under compression and shear loading. Cylindrical compression specimens with different volumes (DS = H) were investigated with strain rates between 0.001 s−1 and about 5750 s−1 at temperatures from 20 °C to 800 °C. Axis-symmetric hat-shaped shear specimens with different shear zone widths were examined at different strain rates as well. A clear dependence of the flow stress on the deformed volume and the particle size was found under compression and shear loading. Metallographic investigation was carried out to show a relation between the deformation of the tungsten particles and the global deformation of the specimens. The size of the deformed zone under either compression or shear loading has shown a clear size effect on the fracture of the hat-shaped specimens.The quasi-static flow curves were described with the material law from Swift. The parameters of the material law were presented as a function of the temperature and the specimen size. The mechanical behaviour of the composite materials were numerically computed for an idealized axis-symmetric hat-shaped specimen to verify the determined material law.  相似文献   

6.
The technique of warm-prestressing to improve the resistance of structural steel with defects against low temperature fracture has received considerable attention. It is found that warm-prestressing can improve the fracture toughness and change the COD or δc, especially the crack tip plastic opening δp.The experimental results obtained from three-point bending tests of 42Mn2 steel specimens at −60°C and −20°C are analyzed. Experiments are also made on the bursting of pressure vessels manufactured from #20 steel. The results indicate that warm-prestressing at room temperature increased the bursting pressure at −40°C for d/t = 0.2 to 0.4, where d is the depth of surface crack and t the vessel thickness.  相似文献   

7.
Transient time dependent stress and strain distribution are obtained for a half-plane made of 4340 steel. A traction load is applied dynamically at a global strain rate of 5·102 s−1. Unlike the classical theory of incremental plasticity, that assumes the same constitutive relation for all elements, the surface/volume energy density theory derives the uniaxial constitutive equation for each element individually according to the local strain rate and strain rate history. Meterial elements are shown to undergo cooling and heating as a result of thermal/mechanical interaction. The equivalent uniaxial response for the traction boundary condition therefore differed from that of the displacement boundary condition considered in Part 1 [1] of this communication. Effective stress and effective strain variations for the local elements next to the applied load exhibited considerable softening after hardening while the plasticity solution increased monotonically. These differences are attributed to the neglect of dilatational and change in local strain rate effects in plasticity in addition to assuming that unloading is parallel to the load path. Damage of the material elements is also discussed in connection with the surface and volume energy density when they reach their respective critical values.  相似文献   

8.
This work is concerned with the thermal/mechanical characterization of the 6061 aluminum alloy stretched uniaxially in an elevated temperature environment. The resulting response is one of nonequilibrium where each local element reacts differently in terms of stress, strain and temperature. That is, the local strain and temperature rate change from one location to another with time. While the initial temperature in both the specimen and its surrounding are kept constant, thermal oscillation occurs when the specimen is strained uniaxially. The temperature in the solid decreases at first below the reference state and then increases. A reversal of heat flow takes place between the specimen and surrounding medium which typifies the nonequilibrium character of thermal/mechanical behavior in uniaxial specimens.Numerical results are obtained for loading rate of 1.27 × 10−4cm/s with initial equilibrium temperature of 25°, 75°, 125° and 175° C. Determined are the nonequilibrium conditions in the solid and on the surface. This is accomplished by considering a two-phase medium such that the surrounding air or gas can interact with the solid, both thermally and mechanically. The state of affairs at or near the solid/gas interface are transient in character; they cannot be preassigned as boundary conditions. The a priori specification of temperature and/or its gradient on solid cannot be justified as it can seriously affect analytical predictions.  相似文献   

9.
A comprehensive study on the response of a nanocrystalline iron and copper mixture (80% Fe and 20% Cu) to quasi-static and dynamic loading is performed. The constitutive model developed earlier by Khan, Huang & Liang (KHL) is extended to include the responses of nanocrystalline metallic materials. The strain rate and grain size dependent behaviors of porous nanocrystalline iron-copper mixture were determined experimentally for both static and dynamic loading. A viscoplastic model is formulated by associating the modified KHL model (representing the fully dense matrix behavior), and Gurson's plastic potential which provides the yield criteria for porous material. Simulations of uniaxial compressive deformations of iron-copper mixture with different initial porosity, grain size and at a wide range of strain rate (10−4 to 103 s−1) are made. The numerical results correlate well with the experimental observations.  相似文献   

10.
11.
The hot deformation behavior of porous FVS0812 aluminum alloy prepared by spray deposition was studied by means of compression tests on a Gleeble 1500 machine. The samples were hot compressed at temperatures ranging from 573 K to 773 K under various true strain rates of 10−4–100 s−1. The deformation behaviors are characterized by a significant strain hardening during hot-compression due to the progressive compaction of the pores with increasing compressive strain. A revised formula describing the relationships of the flow stress, strain rate and temperature of the porous alloy at elevated temperatures is proposed by compensation of strain. The theoretical predictions are compared with experimental results, which show good agreement.  相似文献   

12.
13.
Macroscopic material damage is detected and assessed for the SAFC-40R steel specimen in uniaxial tension even when the stress responded linearly with strain. As the loading increased monotonically at a rate of 0.2 cm/min, the specimen first absorbed heat from the surrounding and then released heat when the strain is almost five times beyond the so-called “elastic limit”. In other words, the specimen undergoes cooling and heating with reference to the ambient temperature. This phenomenon is predicted theoretically for the first time by application of the energy density theory and the results agreed well with experimental data. Obtained is the H-function that possesses a distinct threshold at time between 21 and 22 seconds after loading. This transition is defined as the onset of disorder at which point the energy dissipation density D increases suddenly by one order of magnitude. The corresponding uniaxial stress and strain are 194.4 MPa and 0.9764·10−3 cm/cm, respectively. These values are lower than those normally referred to at the yield point.  相似文献   

14.
A novel in-line rheometer, called Rheopac, has been designed and built in order to study the rheological behaviour of starchy products or, more generally, of products sensitive to a thermomechanical treatment. It is based on the principle of a twin channel, using a balance of feed rate between each of them, in order to make local shear rate vary in the measuring section without changing the flow conditions into the extruder. A wide range of shear rate could be reached and measurements were performed more swiftly than with a classical slit die. The viscous behaviour of maize starch was studied by taking into account the influence of the thermomechanical history, which modified the starch degradation and thus led to important variations in the viscosity. Experimental results were satisfactorily compared to previously published models.Nomenclature E activation energy (J · mol–1) - h channel depth (m) - h 1 depth under the piston valve in channel 1 (m) - h 2 depth under the piston valve in channel 2 (m) - K consistency (Pa·s n ) - K 0 reference consistency (Pa·s n ) - L total channel length (m) - L p length of the piston valve (m) - MC moisture content (wet basis) - n power law index - N screw rotation speed (rpm) - P 0 entrance pressure (Pa) - P e pressure at the entry of the piston valve (Pa) - Q 1 flow rate in channel 1 (m3 · s–1) - Q 2 flow rate in channel 2 m3·s–1) - Q T total flow rate (m3 · s–1) - R constant of perfect gas (8.314 J·mol–1·K–1) - SME specific mechanical energy (kWh · t–1) - T temperature (°C) - T a absolute temperature (K) - T b barrel temperature (°C) - T d die temperature (°C) - T p product temperature (°C) - w channel width (m) - W energetical term (J·m–3) - viscosity (Pa · s) - [gh 0] intrinsic viscosity of native starch (ml·g–1) - [] intrinsic viscosity (ml·g–1) - shear rate (s–1) - shear rate in measuring section (s–1) - maximum shear rate (s–1)  相似文献   

15.
16.
Dynamic compressive behavior of thick composite materials   总被引:3,自引:0,他引:3  
The effect of strain rate on the compressive behavior of thick carbon/epoxy composite materials was investigated. Falling weight impact and split Hopkinson pressure bar systems were developed for dynamic characterization of composite materials in compression at strain rates up to 2000 s–1. Strain rates below 10 s–1 were generated using a servohydraulic testing machine. Strain rates between 10 s–1 and 500 s–1 were generated using the drop tower apparatus. Strain rates above 500 s–1 were generated using the split Hopkinson pressure bar. Unidirectional carbon/epoxy laminates (IM6G/3501-6) loaded in the longitudinal and transverse directions, and cross-ply laminates were characterized. The 90-deg properties, which are governed by the matrix, show an increase in modulus and strength over the static values but no significant change in ultimate strain. The 0-deg and cross-ply laminates show higher strength and ultimte strain values as the strain rate increases, whereas the modulus increnases only slightly over the static value. The increase in strength and ultimate strain observed may be related to the shear behavior of the composite and the change in failure modes. In all cases, the dynamic stress-strain curves stiffen as the strain rate increases. The stiffening is lowest in the longitudinal direction and highest in the transverse direction.  相似文献   

17.
A similarity solution is constructed for the flow of an Oldroyd-B fluid around a 270° re-entrant comer. The velocity is found to vanish like r5/9 and the stress to be singular like r−2/3. A simple expression is found for the streamfunction.  相似文献   

18.
Having developed the methodology for analyzing the failure of a ceramic/rubber/steel composite laminate impacted by a tungsten rod in Part I, Part II of the work is concerned with the progressive damage process where material continuity would be interrupted at different locations and time intervals. Depending on the time rate dependent threshold values of the surface and volume energy density, the degree and extent of damage by fragmentation, mass loss, etc. are determined by finite element calculations for time steps of 0.15, 5.0, 7.5, 10, 20, 21 and 21.5 μs. Stresses and strains possess an oscillatory character in time; they alternate in sign as the impact waves bounce back and forth in the three-layered dissimilar materials.Local strain rates of approximately 105, 103 and 104 s−1 are formed in the ceramic, rubber and steel layer respectively at locations underneath the tungsten rod after 16 μs of impact. A more wide range of strain ratio would have prevailed for a homogeneous layer of the same thickness. The tungsten rod is now badly fragmented while cracking near the surface of the ceramic is also predicted. Local temperature and dissipation energy density rise rapidly as time approached 20 μs. The maximum surface and volume.energy density in the ceramic near the impact region reached 260 MPa · m and 6.39 MPa, respectively. Complete disintegration of the tungsten rods occurred at 21.5 μs. At this time, the ceramic layer is perforated and the rubber layer is partially cracked. The back-up steel plate, however, remained in tack. These predictions agree qualitatively with past observations.  相似文献   

19.
Rate dependent critical strain energy density factor of Huanglong limestone   总被引:1,自引:0,他引:1  
Critical strain energy density of rock can be defined as a fundamental parameter in rock fracture mechanics, an intrinsic material property related to resistance to crack initiation and propagation. By means of the three-point bending experiments, the critical strain energy density factor of Huanglong limestone was measured over a wide range of loading rates from 8.97 × 10−4 MPam1/2 s−1 to 1.545 MPam1/2 s−1. According to the approximate relationship between static and dynamic critical strain energy density factor of Huanglong limestone, relationship between the growth velocity of crack and magnitude of load is obtained. The main conclusions are summarized as follows: (1) when the loading rate is higher than 0.0279 MPam1/2 s−1, the critical strain energy density factor of rock increased markedly with increasing loading rate. However, when loading rate is lower than 0.0279 MPam1/2 s−1, the critical strain energy density factor slightly increased with an increase in loading rate. It is found from experimental results that the critical strain energy density factor is linear proportional to the exponential expression of loading rate, (2) for Huanglong limestone, when the growth velocity of crack is lower than 100 m/s, value of the maximum load was nearly a constant. However, when the growth velocity of crack is higher than 1000 m/s, value of the maximum load dramatically increases with increasing the crack growth velocity, and (3) the critical SED of Huanglong limestone is higher as the loading rate is higher.  相似文献   

20.
Fatigue crack growth and its threshold are investigated at a stress ratio of 0.5 for the three-point bend specimen made of Austenitic stainless steel. The effect of grain size on the crack tip plastic deformation is investigated. The results show that the threshold value Δkth increases linearly with the square root of grain size d and the growth rate is slower for materials with larger grain size. The plastic zone size and ratio for different grain sizes are different at the threshold. The maximum stress intensity factor is kmax and σys is the yield strength. At the same time, the characteristics of the plastic deformation development is discontinuous and anti-symmetric as the growth rate is increased from 2·10—8 to 10−7 mm/cycle.A dimensionless relation of the form for collating fatigue crack starting growth data is proposed in which Δkth represents the stress intensity factor range at the threshold. Based on experimental results, this relation attains the value of 0.6 for a fatigue crack to start growth in the Austenitic stainless steel investigated in this work. Metallurgical examinations were also carried out to show a transgranular shear mode of cyclic cleavage and plastic shear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号