首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new method using acetylsalicylic acid (aspirin) modified SiO2 nanoparticles (nanometer SiO2-aspirin) as a solid-phase extractant (SPE) has been developed for the preconcentration of trace amounts of Fe(III) prior to their determination by inductively coupled plasma optical emission spectrometry. The preconcentration conditions of analytes were investigated, including the pH value, the shaking time, the mass of sorbent, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the sorption capacity of nanometer SiO2-aspirin was found to be 1.28 mmol g−1. The preconcentration factor is 50. The detection limit (3σ) for Fe(III) was 0.49 ng mL−1. The method was validated by analyzing two certified reference materials (GBW 08301, river sediment and GBW 08303, polluted farming soil), and the results obtained are in good agreement with standard values. The method was also applied to the determination of trace Fe(III) in biological and water samples with satisfactory results. Correspondence: Xiangbing Zhu, Department of Chemistry, Lanzhou University, Lanzhou 730000, P.R. China  相似文献   

2.
The quenching of fluorescence of the free-base tetraphenylporphyrin, H2TPP, and its metal derivatives, MgTPP and ZnTPP by diverse iron(III) complexes, [Fe(CN)6]3−, Fe(acac)3, [Fe(mnt)2], Fe(Salen)Cl, [Fe4S4(SPh)4]2−·, FeTPPCl and [Fe(Cp)2]+ has been studied both in homogeneous medium (CH3CN) and micellar media, SDS., CTAB and Triton X-100. The quenching efficiencies are analysed in terms of diffusional encounters and it has been possible to separate static quenching components. The quenching constants are dependent on the nature of the ligating atoms around iron(III) and also on the extent of π-conjugation of the ligands. The quenching mechanism has been investigated using steady-state irradiation experiments. Evidence for oxidative quenching by iron(III) complexes was obtained, though the spin multiplicities of the excited electronic states of iron(III) complexes permit both energy and electron transfer mechanisms for quenching of the singlet excited state of the porphyrins.  相似文献   

3.
 Zirconium (IV) was determined spectrophotometrically by reaction with quercetin as primary ligand and oxalate as secondary ligand. Polyvinylpyrrolidone (PVP) was used as protective colloid to solubilize the formed zirconium quercetin oxalate ternary complex. The molar absorptivity of the 1:3:1 (zirconium–quercetin–oxalate) complex is 7.31 × 104 L·mol−1 cm−1 at 430 nm with a stability constant of 8.2 × 1020 and its detection limit is 0.16 mg/L. Beer’s law is rectilinear up to 1.46 mg/L of zirconium (IV). The sensitivity index is 1.25 ng cm−2. The reaction of aluminium (III) with quercetin in presence of PVP as a surfactant has been studied spectrophotometrically. The molar absorptivity of the 1:3 (aluminium–quercetin) complex is 8.09 × 104 × L·mol−1·cm−1 at 433 nm, its stability constant is 2.6 × 1013 with sensitivity index of 0.33 ng·cm−2 and its detection limit is 0.08 mg/L. The optimal conditions for the quantitative determination of zirconium and aluminium were studied. The proposed methods are examined by statistical analysis of the experimental data. The methods are free from interference of most cations and anions. The proposed methods have been used to determine zirconium and aluminium in industrial waste water. Received May 30, 2001; accepted November 2, 2001; published online July 15, 2002  相似文献   

4.
A simple and selective method using ammonium pyrrolidinedithiocarbamate modified activated carbon (APDC-AC) as solid phase extractant has been developed for speciation of As(III) in water samples. At pH 1.8–3.0, As(III) could be adsorbed quantitatively by APDC-AC, and then eluted completely with 2.0 mL of 0.1 mol L−1 HNO3, while As(V) could almost not be retained at pH 1–7. Effects of acidity, sample flow rate, concentration of elution solution and interfering ions on the recovery of As(III) have been systematically investigated. Under the optimal conditions, the adsorption capacity of APDC-AC for As(III) is 7.3 mg g−1. The detection limit (3σ) of As(III) is 0.05 ng mL−1 for graphite furnace atomic absorption spectrometry (GFAAS) with enrichment factor of 50, and the relative standard deviation (RSD) is 4.1% (n = 9, C = 5 ng mL−1). The method has been applied to the determination of trace As(III) in water, and the recoveries of As(III) are 100 ± 10%. Correspondence: Yiwei Wu, Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, P.R. China  相似文献   

5.
 Yttrium was determined by means of the resonance light scattering (RLS) technique. The characteristics of resonance light scattering spectra of yttrium-1, 6-bi(1′-phenyl-3′-methyl-5′-pyrazolone-4′-) hexanedione (BPMPHD), the effective factors and optimum conditions were studied. In the pH range of 5.0–6.1, yttrium-BPMPHD complex produces three characteristic peaks of RLS at 365, 402 and 467 nm. The enhanced intensity of RLS is proportional to the concentration of yttrium in the range of 1.0×10−8 to 1.0×10−5 mol · L−1. The limit of detection is 5.9×10−9 mol · L−1. The method has been used for the determination of Y3+ in mixed rare earths. Correspondence: Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China. e-mail: wux@sdu.edu.cn Received July 3, 2002; accepted October 20, 2002  相似文献   

6.
 A novel sensitive and simple method for rapid and selective extraction, preconcentration and determination of iron (as its bathophenanthroline complex) and copper (as its neocuproine complex) using octadecyl silica cartridges and dual wavelength spectrophotometry is presented. The dual wavelength method (533 nm for the iron-bathophenanthroline and 454 nm for the copper-neocuproine as the analytical wavelength) is used to eliminate spectral interferences. Extraction efficiency and the influence of flow rates of sample solution and eluent, pH, amount of neocuproine, bathophenanthroline and hydroxylamine hydrochloride, type and least amount of eluent for elution of iron and copper complexes from cartridge, break-through volume and limit of detection are evaluated. The effects of various cationic and anionic interferences on percent recovery of iron and copper are also studied. Extraction efficiencies >95% are obtained by elution of cartridges with minimal amount of organic solvent. Iron and copper were determined in the range of 3–100 ng mL−1. The limits of detection are 0.98 and 1.13 ng mL−1 for iron and copper, respectively. The proposed method is applied successfully to the determination of both analytes in river, tap and well water samples. Author for correspondence. E-mail: yyamini@modares.ac.ir Received September 18, 2002; accepted December 12, 2002 Published online May 5, 2003  相似文献   

7.
A new analytical method was developed for on-line monitoring of residual coagulants (aluminium and iron salts) in potable water. The determination was based on a sequential procedure coupling an extraction/enrichment step of the analytes onto a modified resin and a spectrophotometric measurement of a surfactant-sensitized binary complex formed between eluted analytes and Chrome Azurol S. The optimization of the solid phase extraction was performed using factorial design and a Doehlert matrix considering six variables: sample percolation rate, sample metal concentration, flow-through sample volume (all three directly linked to the extraction step), elution flow rate, concentration and volume of eluent (all three directly linked to the elution step). A specific reagent was elaborated for sensitive and specific spectrophotometric determination of Al(III) and Fe(III), by optimizing surfactant and ligand concentrations and buffer composition. The whole procedure was automated by a multisyringe flow injection analysis (MSFIA) system. Detection limits of 4.9 and 5.6 μg L−1 were obtained for Al(III) and Fe(III) determination , respectively, and the linear calibration graph up to 300 μg L−1 (both for Al(III) and Fe(III)) was well adapted to the monitoring of drinking water quality. The system was successfully applied to the on-site determination of Al(III) and Fe(III) at the outlet of two water treatment units during two periods of the year (winter and summer conditions).  相似文献   

8.
Pyrene-tetramethylpiperidinyl (Pyr-Tempo) as a spin label fluorescent probe for iron(II) was synthesized. It exhibited weak fluorescence (λexcem = 346/399 nm) in aqueous solution due to an intramolecular quenching pathway. A method for determination of iron(II) was proposed based on the fluorescence enhancement of the probe in the presence of iron(II) in acidic medium. Under optimum conditions, the fluorescence enhancement of Pyr-Tempo is linearly proportional to the iron(II) concentration range of 6.0 × 10−8 to 9.6 × 10−6 mol L−1 with a detection limit of 8.0 × 10−9 mol L−1. The relative standard deviation (RSD) of six replicate measurements is 1.95% for 3.0 × 10−7 mol L−1 iron(II). The developed spin label fluorescence probe is found to be rapidly and sensitively responsive to iron(II) with high selectivity compared to existing fluorescence methods. The proposed method was successfully applied to iron(II) detection in five real samples with satisfactory results obtained by manual UV/Vis spectrophotometry (standard method) with 1,10-phenanthroline.  相似文献   

9.
An adsorptive stripping chronopotentiometric (SCP) method has been developed for quantification of dissolved iron in estuarine and coastal waters. After UV-digestion of filtered samples the Fe(III) ions in non-deoxygenated samples were complexed with solochrom violet RS (SVRS). The complexes were then accumulated by adsorption on the surface of a mercury-film electrode. The stripping step was performed by applying a constant current of −17 μA. Sensitivity and detection limit were 15 ms nmol−1 L (270 ms μg−1 L) and 1.5 nmol L−1 (84 ng L−1), respectively, for 60-s electrolysis time. Compared with the only other chronopotentiometric method available for measurement of iron in natural waters, our procedure is fifty times more sensitive in a quarter of the electrolysis time. It therefore enables detection of the concentrations currently found in estuarine and coastal waters. The method was successfully used to study the behaviour and seasonal variations of dissolved iron in the Penzé estuary, NW France.  相似文献   

10.
 Simple, rapid, sensitive and selective methods for the determination of Cr(III) and W(VI) with flavonol derivatives in the presence of surface-active agents are proposed. In the pH ranges 3.4–4.2 and 1.9–2.5, the molar absorptivities of Cr(III)-morin-emulsifier S (EFA) and W(VI)-morin-polyvinylpyrrolidone (PVP) systems are 1.13×105 and 2.13×104 L mol−1 cm−1 at 435 and 415 nm, respectively. The Cr(III)-quercetin-PVP and W(VI)-quercetin-cetylpyridinium bromide (CPB) systems are formed in the pH ranges 4–4.6 and 2.2–2.8 with molar absorptivities 1.02×105 and 9.02×104 L. mol−1 cm−1 at 441 and 419 nm, respectively. The linear dynamic ranges for the determination of Cr(III) and W(VI) with morin in the presence of EFA and PVP are 0.03–0.46 and 0.71–8.1 μg mL−1, respectively. The corresponding ranges with quercetin are 0.04–0.54 and 0.14–2.1 μg mL−1 of Cr(III) and W(VI), respectively. The r.s.d (n = 10) for the determination of 0.25 and 3.7 μg mL−1 of Cr(III) and W(VI) with morin and their detection limits are 0.88 and 0.99% and 0.016 and 0.63 μg mL−1, respectively. Using quercetin, the r.s.d (n = 10) for 0.22 and 1.2 μg mL−1 of Cr(III) and W(VI) and their detection limits are 0.92 and 0.91% and 0.015 and 0.08 μg mL−1, respectively. The critical evaluation of the proposed methods is performed by statistical analysis of the experimental data. The proposed methods are applied to determine Cr in steel, non-ferrous alloys, wastewater and mud filtrate and to the determination of W in steel. Received March 8, 1999. Revision January 21, 2000.  相似文献   

11.
A new Schiff-base ligand [N, N′, N″-Tri- (2,4-dihydroxyacetophenone) – triaminotriethylamine (TDATA)] with a tripodal structure was synthesized. Its fluorescence intensity with the europium(III) complex was increased about 178-fold in the presence of sodium acetate (NaAc) and about 126-fold in the presence of sodium phosphate (Na3PO4) solution. After adding the organic solvent dimethylsulfoxide (DMSO) to the above system, which leads to Eu3+ the fluorescence was further enhanced about 12-fold. Spectrofluorimetric determination of trace amounts of Eu3+ based on the phenomenon was performed. The excitation and emission wavelength is 365 nm and 615 nm, respectively. Under optimum conditions, the fluorescence intensities vary linearly with the concentration of Eu3+ in the range of 4.9 × 10−12–3.2 × 10−6 mol · L−1 with a detection limit of 4.5 × 10−12 mol · L−1 (for the TDATA-NaAc-DMSO system) or 6.2 × 10−11–8.6 × 10−6 mol · L−1 with a detection limit of 6.0 × 10−11 mol · L−1 (for the TDATA-Na3PO4-DMSO system). Interferences of some rare earth metals and other inorganic ions are described. The method is a selective, sensitive, rapid and simple analytical procedure for the determination of europium(III) in a high purity yttrium oxide and synthetic sample. The mechanism for the fluorescence enhancement is also discussed.  相似文献   

12.
A highly sensitive and very simple spectrophotometric flow-injection analysis (FIA) method for the determination of iron(III) at low concentration levels is presented. The method is based on the measurement of absorbance intensity of the red complex at 410 nm formed by iron(III) and diphenylamine-4-sulfonic acid sodium salt (DPA-4-SA). It is a simple, highly sensitive, fast, and low cost alternative method using the color developing reagent DPA-4-SA in acetate buffer at pH 5.50 and the flow-rate of 1 mL min−1 with the sample throughput of 60 h−1. The method provided a linear determination range between 5 μg L−1 and 200 μg L−1 with the detection limit (3S) of 1 μg L−1 of iron(III) using the injection volume of 20 μL. FIA variables influencing the system performance were optimized. The amount of iron(III) and total iron in river and seawater samples was successfully determined. Repeatability of the measurements was satisfactory at the relative standard deviation of 3.5 % for 5 determinations of 10 μg L−1 iron(III). The accuracy of the method was evaluated using the standard addition method and checked by the analysis of the certified material Std Zn/Al/Cu 43 XZ3F.  相似文献   

13.
A simple and rapid flow-injection spectrophotometric method for the determination of iron(III) and total iron is proposed. The method is based on the reaction between iron(III) and O-acetylsalicylhydroxamic acid (AcSHA) in a 2 % methanol solution resulting in an intense violet complex with strong absorption at 475 nm. Optimum conditions for the determination of iron(III) and the interfering ions were tested. The relative standard deviation for the determination of 5 μg L−1 iron(III) was 0.85 % (n = 10), and the limit of detection (blank signal plus three times the standard deviation of the blank) was 0.5 μg L−1, both based on the injection volumes of 20 μL. The method was successfully applied in the determination of iron(III) and total iron in water and ore samples. The method was verified by analysing a certified reference material Zn/Al/Cu 43XZ3F and also by the AAS method.  相似文献   

14.
 The applicability of tetramethylenedithiocarbamate (TMDTC) and hexamethylenedithiocarbamate (HMDTC) for colloid flotation separation of manganese in traces from fresh (spring, well and tap) water was studied. The experimental conditions for the successful manganese separation and preconcentration before electrothermal atomic absorption spectrometric (ETAAS) determination were optimised. Higher enrichment of manganese was achieved when a larger amount of HMDTC is used. Applying iron(III) hexamethylenedithiocarbamate, Fe(HMDTC)3, as a precipitate collector, manganese was determined at μg/L levels singly or simultaneously with lead and zinc in 1 L of water sample. The applicability of the proposed procedure have been verified by analyses of fresh water samples using the method of standard addition, as well as by comparing the results obtained by ETAAS with those obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The detection limit of manganese using this method is 0.025 μg/L. Received August 30, 1999. Revision May 15, 2000  相似文献   

15.
This study describes the design and optimisation of a field flow system for the in-situ collection and on-line determination of phosphate, nitrate and nitrite by flow injection analysis-spectrophotometry. The method is based on the initial determination of phosphate as its phosphoantimonylmolybdenum blue complex which is then oxidized on-line by nitrite and the decrease in absorbance is monitored at 880 nm. Nitrate is determined as the difference between total and initial nitrite content in a separate flow after reduction to nitrite in a cadmium reductive column. The calibration curves were linear in the range 0–2.00 mg L−1 P-phosphate, 0–10.00 mg L−1 nitrite and 0–7.00 mg L−1 nitrate with correlation coefficients of 0.9979, 0.9993 and 0.9995, respectively. The detection limits, calculated as 3S/N, were 0.15 mg L−1 for P-phosphate, 0.17 mg L−1 for nitrite and 0.09 mg L−1 for nitrate. The reproducibility was below 3.0% (n = 7). Method validation in the analysis of natural water and wastewater samples revealed that it can efficiently be applied to the determination of the target analytes, with recoveries in the range of 92–108%. Correspondence: Athanasios G. Vlessidis, Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece  相似文献   

16.
Summary.  The kinetics of the formation of the 1:3 complex of chromium(III) with L-glutamic acid and DL-lysine were studied spectrophotometrically at and 550 nm. The reaction was found to be first order in both reactants. Increasing the hydrogen ion concentration from 3.2×10−5 to 1.0×10−3 molċdm−3 retarded the reaction rate which is of the form . Values of 28.8 and 63.6 kJċmol−1 were obtained for the energy of activation and −184 and −116 Jċ K−1ċmol−1 for the entropy of activation for L-glutamic acid and DL-lysine. The logarithms of the formation constants of the two complexes were found to be 5.9 and 5.1. Received January 7, 2000. Accepted (revised) March 8, 2000  相似文献   

17.
A new chemiluminescence (CL) method combined with flow injection technique is described for the determination of Cr(III) and total Cr. It is found that a strong CL signal is generated from the reaction of Cr(III), lucigenin and KIO4 in alkaline condition. The determination of total Cr is performed by pre-reduction of Cr(VI) to Cr(III) by using H2SO3. The CL intensity is linearly related to the concentration of Cr in the range 4.0 × 10−10–1.0 × 10−6 g mL−1. The detection limit (3s b) is 1 × 10−10 g mL−1 Cr and the relative standard deviation is 1.9% (5.0 × 10−8 g mL−1 of Cr(III) solution, n = 11). The method was applied to the determination of Cr(III) and total Cr in water samples and compared satisfactorily with the official method.  相似文献   

18.
Summary.  The mechanisms of photoinduced processes occurring in methanolic solutions of trans-[Fe(4-R-benacen)(CH3OH)I] (4-R-benacen 2− : N,N′-ethylene-bis-(4-R-benzoylacetoneiminato) tetradentate open-chain Schiff bases with R = H, Cl, Br, CH3, OCH3, or NO2) were investigated by electronic absorption spectroscopy and EPR spin trapping. The complexes are redox-stable in the dark both in the solid state and in methanolic solutions. Ultraviolet and/or visible irradiation in methanol induces photoreduction of Fe(III) to Fe(II). No formation of I˙ or was observed. ˙CH2OH radicals and/or solvated electrons were identified in irradiated systems using nitrosodurene or 5,5-dimethyl-1-pyrroline-N-oxide as spin traps. The final product of the photooxidation coupled with the photoreduction of Fe(III) is formaldehyde, the molar ratio of Fe(II) and CH2O being close to 2:1. The efficiency of the photoredox process is strongly wavelength dependent and influenced by the peripheral groups R of the tetradentate ligands. It is suggested that the primary photoredox step starts from thermally nonequilibrated ligand-to-metal charge transfer excited states. Received May 2, 2001. Accepted May 30, 2001  相似文献   

19.
Four pyridinecarboxamide iron dicyanide building blocks and one Mn(III) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a series of trinuclear cyanide-bridged FeIII–MnII complexes: {[Mn(DMF)2 (MeOH)2][Fe(bpb)(CN)2]2}·2DMF (1), {[Mn(MeOH)4][Fe(bpmb)(CN)2]2}·2MeOH·2H2O (2), {[Mn(MeOH)4][Fe(bpdmb)(CN)2]2}·2MeOH·2H2O (3) and {[Mn(MeOH)4][Fe(bpClb)(CN)2]2}·4MeOH (4) (bpb2− = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2− = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpdmb2− = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, bpClb2− = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate). Single-crystal X-ray diffraction analysis shows their similar sandwich-like structures, in which the two cyanide-containing building blocks act as monodentate ligands through one of their two cyanide groups to coordinate the Mn(II) center. Investigation of the magnetic properties of these complexes reveals antiferromagnetic coupling between the neighboring Fe(III) and Mn(II) centers through the bridging cyanide group. A best fit to the magnetic susceptibilities of complexes 1 and 3 gave the magnetic coupling constants J = −1.59(2) and −1.32(4) cm−1, respectively.  相似文献   

20.
The electrochemical redox behavior of Fe(II)/Fe(III) systems formed during the oxidation of complexes [Fe(C7H4NO3S)2(H2O)4] · 2H2O (Fe-sac) and [Fe(C7H4NO3S)2(C12H8N2] · 2H2O (Fe-sac-phen) have been investigated using cyclic voltammetry in the aqueous medium. In the CVs one pair of well-defined cathodic and anodic peaks appear for the transfer of single electron in the Fe-sac complex. The peak potentials are much wider separated as compared with the free (uncoordinated) Fe(II)/Fe(III) system. The ΔE values demonstrate that the electrode process is irreversible. In the presence of secondary ligand, 1,10-phenanthroline (Fe-sac-phen complex), the redox behavior of iron complexes is quasireversible. The effect of pH on the redox behavior of iron system is studied in acetate buffer. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 12, pp. 1504–1509. The text was submitted by author in English  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号