首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we report the effects of shear rates and polymer concentrations in the formation of asymmetric nanofiltration membrane using a simple dry/wet phase inversion technique. Employing the combination of irreversible thermodynamic model, solution-diffusion model (Spiegler–Kedem equation), steric-hindrance pore (SHP) model and Teorell–Meyers (TMS) model, the transport mechanisms and membrane structural properties were determined and have been characterized for different cases of those formation parameters. The experimental and modeling showed very promising results in terms of membrane performance with interesting structural details. The optimum shear rate (critical shear rate) was found to be at about 203.20 s−1 and the best polymer concentration toward the formation of high performance nanofiltration membrane is in the range of 19.60–23.10%. The modeling results suggested that the pore radius of the membranes produced lies within the range of pore radius of 29 commercial available membranes. This study also proposed that the electrolytes transport through nanofiltration membrane was dominated by a convection factor which accounted approximately 30% more than a diffusion factor. This study also indicated that shear rate and polymer concentration were found to affect the membrane performance and structural properties by providing, to a certain extent, an oriented membrane skin layer which in turn exhibiting an improvement in membrane separation ability.  相似文献   

2.
The activity coefficients at 25‡C of DL-serine and L-serine in aqueous solutions of NaCl and KC1 were measured. This study examines the effect of the nature of the cation of the electrolyte on the activity coefficients of the optical-isomers of serine in aqueous solutions for molality of serine up to 0.4 and molality of electrolyte up to 1. An electrochemical cell with two ion-selective electrodes, a cation, and an anion ion selective electrode,vs. a double-junction reference electrode was used to measure the activity coefficients of the electrolyte and the results were converted to the activity coefficients of serine in the aqueous electrolyte solution. The comparison of the results obtained for DL- and L-serine indicates that the two optical isomers have identical interactions with electrolytes in aqueous solutions and that for this amino acid the effect of the cation of the electrolyte is not significant. Comparison of these results with previous measurements for DL-alanine in aqueous solutions of the same electrolytes show the notable effect of the backbone of the amino acid.  相似文献   

3.
The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.  相似文献   

4.
The transmembrane electrical potential (TMEP) across two commercial nanofiltration membranes (ESNA1-K and Filmtec NF) was investigated in KCl and MgCl(2) solutions. TMEP was measured in a wide range of salt concentrations (1-60 mol·m(-3)) and pH values (3-10) at the feed side, with pressure differences in the range of 0.1-0.6 MPa. A two-layer model based on the Nernst-Planck equation was proposed to describe the relation between TMEP and permeation flux. From the pattern of these curves, the information of membrane structure could be deduced. In the concentration range investigated, TMEP in KCl solutions was always positive and decreased as the salt concentration increased. The contribution of the membrane potential to the TMEP decreased. TMEP was greatly affected by the feed pH. When the feed pH increased, the mobility of cations increased, which indicated that the charges of NF membranes were more negative. The zero point of TMEP and the minimum of rejection in KCl solution were consistent and occurred at the isoelectric point of NF membranes, while in MgCl(2) solution the zero point of TMEP located at a higher pH value. The TMEP in MgCl(2) solutions changed its sign at a given concentration, and by calculating the transport number the location of the minimum rejection could be determined.  相似文献   

5.
Dielectric spectroscopy (DS) was applied to a nanofiltration (NF) membrane to detect its double-layer structure and ion permeation. Dielectric measurements were carried out on the systems composed of the NF membrane NTR7450 and dilute solutions of eight electrolytes, LiCl, NaCl, KCl, NH(4)Cl, MgCl(2), CaCl(2), BaCl(2), and CuCl(2). Two relaxations were observed in the frequency range from 40 Hz to 4 MHz for each system. On the basis of characteristics of the dielectric spectra and the Maxwell-Wagner interfacial polarization theory, the low-frequency relaxation was attributed to inhomogeneity of the membrane structure itself, whereas the high-frequency relaxation was attributed to interfacial polarization between the membrane and the solution. A multiphase dielectric model previously developed by one of the authors and co-workers was adopted to present systems to analyze the dielectric spectra, and electric parameters, i.e., capacitance and conductance, of the two layers composing the membrane were obtained. The electric properties estimated for the two layers were different and changed with the environment in a different manner. Further analyses suggest that the two layers had a different separation mechanism due to their difference in materials, looseness, and fixed charge content. The fixed charge density of one layer was estimated, and the ion permeation difficulties in both layers was compared. This research revealed that DS was by far an effective method to obtain detailed electric parameters about the inner multilayer structure of the NF membrane and to elucidate separation mechanisms of each layer.  相似文献   

6.
7.
It is well known that the asymmetry of a membrane structure is closely related to its functions. Transport of ions is also affected by the asymmetry of the membrane structure. In this paper, ion transport through an asymmetric membrane is discussed theoretically. Equations are derived for the partition coefficient and the fixed charge density of a membrane with different surfaces. It is concluded that facilitated transport as well as reverse transport takes place both in membranes which are asymmetric with respect to the partition coefficient and in membranes with asymmetric charge distribution. In addition, the following two kinds of asymmetric membranes were prepared: one is a cellulose acetate—collodion membrane, which is asymmetric with respect to the partition coefficient, and the other is an NaOH-treated collodion—collodion membrane, which is asymmetric with respect to the membrane charge density. Ion transport through these membranes was investigated in order to verify the validity of the theory; the experimental results are in agreement with the theory.  相似文献   

8.
Hyperbranched polyester-grafted poly(vinylidene fluoride) (HBPE-g-PVDF) was synthesized and used as additive in preparation of PVDF blend membranes. HBPE-g-PVDF copolymer was characterized with FTIR and TGA techniques. The prepared membranes were also characterized with SEM, AFM and contact angle measurement. The performance of prepared membranes as nanofiltration membrane was studied by pure water flux (PWF), salt rejection, dynamic and static fouling tests. The results showed that hydrophilicity of prepared membranes greatly increased after blending, and their pore size and pore size distribution and so PWF of blend membranes increased.  相似文献   

9.
Earlier unpublished measurements of the specific heat capacities of aqueous NaCl, KCl, and NaBr solutions from 5 to 85°C and from 0.05m to saturation are presented. A twin calorimeter was used. A precision of nearly 1 part in 104 in the specific heat capacity is claimed. The results are compared with literature values (summaries or original data) for heat capacity, heat of dilution, and activity coefficient of these salts in solution by means of a polynomial in half-integer powers of molality and temperature. It is found that our values agree well with the more recent literature values of the heat capacities. Small systematic inconsistencies between the various types of data were found.The experimental results presented here are taken from the postdoctoral work of Dr. F. W. Lamb, 1946–47, and from the master's thesis of Dr. J. E. Tanner, Indiana University (1954), obtainable from University Microfilms, Inc., Ann Arbor, Michigan, order number M-763.  相似文献   

10.
Electrical and electrokinetic phenomena (electrical resistance, streaming potential and membrane potential) in a porous polysulfone membrane was studied in the framework of the linear thermodynamics of irreversible processes and the phenomenological coefficients were determined for different concentrations of NaCl and MgCl2 solutions (10−3M<5×10−2M). From experimental values, other characteristic membrane parameters such as the concentration of fixed charge in the membrane (=−3×10−3M), the ionic transport numbers and permeabilities through the membrane (t(Na+)=0.392 and t(Mg+2)=0.363; P(Na+)=3.5×l0−8m/sec and P(Mg+2)=2.9×10−8m/sec) were also obtained. Membrane surface-electrolyte solution interface was characterized by zeta potential values. The effect of both salt concentration and pH on zeta potential results was also studied.  相似文献   

11.
Dielectric properties of a nanofiltration membrane immersed in dilute aqueous electrolyte solutions were measured, and frequency dependence of capacitance and conductance of the systems was analyzed, based on the interfacial polarization theory, giving values of permittivity and conductivity of the membrane and the solutions. Permittivity, epsilon m, of the membrane slightly decreased whereas conductivity, km, of the membrane increased with increasing electrolyte concentration, as a result of entrance of ions into the membrane. The ratio of membrane/solution conductivity, km/kw, also depended on the electrolyte concentration, showing that distribution of ions in the membrane and in solutions follow Donnan equilibrium, due to the presence of negative fixed charges in the membrane. New expressions were derived from Donnan equilibrium principle to explain this phenomenon, and negative fixed charge concentration ce of the membrane was obtained; thus the Donnan potential, DeltaPhi Don, of the membrane in solutions at various concentrations could be calculated. The new expressions could be expected to be usable to analyze ion permeation property through membrane.  相似文献   

12.
13.
This work studies the effect of two membrane-formation parameters, evaporation time and casting thickness, on the diffusive mass transport of organic solutes through an organic solvent nanofiltration (OSN) membrane. These parameters showed a coupled effect on the final membrane thickness, which was explained in terms of top-layer formation. In a concentration-driven dialysis, both parameters, as well as the resulting membrane thickness, had a significant effect on mass transport. Casting thickness had the greatest effect on membrane mass transport rates. Multivariate regression was used to model the dialysis process with acceptable fit. A representation of the membrane morphology was obtained from SEM pictures and used to formulate an alternative mechanistic mass-transport model. A resistance-circuit analogy was used to describe transport through the top and microporous layers, which also considered diffusion through the pores and the polymer for each layer. From the analyses of the models and considering that no differences in top-layer thickness were observed by SEM, it is concluded that membrane asymmetry, determined by the formation parameters, controls mass transport, rather than top-layer thickness.  相似文献   

14.
The activity coefficients for saturated aqueous KCl, CsCl and mixtures of NaCl with each of these electrolytes are calculated from solution properties using the ion interaction model as well as from the solubility. The agreement between the two sets of results for both single and mixed electrolytes is, in general, good when it is considered that the saturated solution molatities are often much higher than those whose properties were used in the evaluation of the ion interaction parameters. Also, for pure KCl (aq) the agreement is good up to 300°C, an extrapolation 50°C above the range of data on which the equations were based.  相似文献   

15.
A mathematical framework for analysing electrokinetic flow in microchannel networks is outlined. The model is based on conservation of volume and total charge at network junctions, but in contrast to earlier theories also incorporates conservation of ion charge there. The model is applied to mixed pressure-driven/electro-osmotic flows of binary electrolytes through homogeneous microchannels as well as a 4:1:4 contraction-expansion series network. Under conditions of specified volumetric flow rate and ion currents, non-linear steady-state phenomena may arise: when the direction of the net co-ion flux is opposite to the direction of the net volumetric flow, two different fully developed, steady-state flow solutions may be obtained. Model predictions are compared with two-dimensional computational fluid dynamics (CFD) simulations. For systems where two steady states are realisable, the ultimate steady behaviour is shown to depend in part upon the initial state of the system.  相似文献   

16.
17.
The muon hyperfine coupling constant (hfc) of the light hydrogen isotope muonium (Mu) was measured in aqueous methanol, NaCl, and KCl solutions with varying concentrations, in deuterated water, and in deuterated methanol. The muon hfc is shown to be sensitive to the size and composition of the primary solvation shell, and the three-dimensional harmonic oscillator model of Roduner et al. (J. Chem. Phys. 1995, 102, 5989) has been modified to account for dependence of the muon hfc on the methanol or salt concentration. The muon hfc of Mu in the aqueous methanol solutions decreases with increasing methanol concentration up to a mole fraction (chiMeOH) of approximately 0.4, above which the muon hfc is approximately constant. The concentration dependence of the muon hfc is due to hydrophobic nature of Mu. It is preferentially solvated by the methyl group of methanol, and the proportion of methanol molecules in the primary solvation shell is greater than that in the bulk solution. Above chiMeOH approximately 0.4, Mu is completely surrounded by methanol. The muon hfc decreases with increasing methanol concentration because more unpaired electron spin density is transferred from Mu to methanol than to water. The unpaired electron spin density is transferred from Mu to the solvent by collisions that stretch one of the solvents bonds. The amount of spin density transferred is likely inversely related to the activation barrier for abstraction from the solvent, which accounts for the larger muon hfc in the deuterated solvents. The muon hfc of Mu in electrolyte solution decreases with increasing concentration of NaCl or KCl. We suggest that the decrease of the muon hfc is due to the amount of spin density transferred from Mu to its surroundings being dependent on the average orientation of the water molecules in the primary solvation shell, which is influenced by both Mu and the ions in solution, and spin density transfer to the ions themselves.  相似文献   

18.
Electrochemical techniques were used to determine the corrosion rate of pure tin metal as compared to 80 Sn/20 Hg tin amalgam. X-ray diagrams showed that this amalgam was a crystalline γ2 phase, whereas a 50 Sn/50 Hg amalgam contained liquid alloy embedded in the same γ2 phase. Open circuit potential measurements, combined with narrow range potential scanning voltammetry, lead to the conclusion that amalgamation resulted in enhancement of the corrosion current, mainly by increasing the cathodic electron transfer reaction kinetics both in deaerated and in oxygen-saturated NaCl solution. When maintained at zero current potential in a solution containing dissolved O2 gas, the samples were gradually covered with an insulating oxide layer which was identified by a series of electrochemical impedance diagrams recorded at different time intervals. The oxide layer was firmly adherent to the bulk tin metal but was poor at protecting the amalgam electrode. Finally, at potential values where the anodic current reached a few mA/cm2, the pure tin metal surface was suddenly deteriorated by the formation of extremely deep pinhole corrosion pits, while this effect was smoothed down by amalgamation. Electronic Publication  相似文献   

19.
The enthalpies of solution of l-proline in aqueous electrolyte solutions within the electrolyte molality range up to 4.9 mol kg?1 of NaCl and up to 4.0 mol kg?1 of KCl at 288, 298 and 313 K have been measured by the calorimetric method. Enthalpies of transfer of l-proline from water to aqueous electrolyte solutions up to saturation have been derived at 273–348 K. The enthalpic and heat capacity parameters of pair and triplet interaction of l-proline with electrolyte in water have been evaluated. Enthalpic parameters of pair interaction at 298 K have been compared to similar parameters for glycine and l-alanine. The temperature changes of reduced enthalpy, and also the change of entropy and reduced Gibbs energy of transfer of l-proline from water to aqueous electrolyte solution at temperature rise from 273 to 323 K have been determined. It has been shown that the entropy–enthalpy compensation takes place for transfer processes.  相似文献   

20.
This paper reports the effect of membrane pretreatment using different organic solvents on the performance of polyamide, polyimide and polydimethylsiloxane (PDMS) membranes in methanol solutions. Membrane pretreatment using acetone, methanol and toluene results in significant changes of membrane flux and rejection for polyamide- and polyimide-based membranes (Desal-DK and STARMEM 228) due to membrane swelling. The Performance of a polydimethylsiloxane (PDMS)-based membrane (MPF-50) in methanol solutions was not significantly affected by membrane pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号