首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new fluorescent devices for protons and metal ions have been synthesized and characterized, and their photophysical properties have been explored; these are the macrocycles 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) and 7-(10-methyl-9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L2) and the bis macrocycle 7,7'-[9,10-anthracenediylbis(methylene)]bis-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L3). All these systems have a pyridil-thioether-containing macrocycles as a binding site and an anthracene moiety as a signaling agent. The coordination properties of these ligands toward Cu(II), Co(II), Ni(II), Zn(II), and Pd(II) have been studied in solution and in the solid state. The addition of these metal ions to dichloromethane solutions of L1, L2, and L3 produce strong changes in the absorption and emission spectra of these ligands. The stoichiometry of the species, formed at 298 K, have been determined from absorption and fluorescence titrations. The Co(II) and Cu(II) complexes of L1 have been studied by EPR spectroscopy. This last complex and its free ligand have also been characterized by X-ray crystallography.  相似文献   

2.
The synthesis and characterisation of copper(i) complexes, including two crystal structures of the new chiral pyridine-containing macrocyclic ligands (PC-type), and their use as catalysts in asymmetric cyclopropanation reactions are reported.  相似文献   

3.
Dinuclear Cd(II), Cu(II), and Zn(II) complexes of L2OH (L2OH = 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane) are compared as catalysts for cleavage of the RNA analogue HpPNP (HpPNP = 2-hydroxypropyl 4-nitrophenyl phosphate) at 25 degrees C, I = 0.10 M (NaNO(3)). Zn(II) and Cu(II) readily form dinuclear complexes at millimolar concentrations and a 2:1 ratio of metal ion to L2OH at neutral pH. The dinuclear Zn(2)(L2O) and Cu(2)(L2O) complexes have a bridging alkoxide group that brings together the two cations in close proximity to facilitate cooperative catalysis. Under similar conditions, the dinuclear complex of Cd(II) is a minor species in solution; only at high pH values (pH 10.4) does the Cd(2)(L2O) complex become the predominant species in solution. Analysis of the second-order rate constants for cleavage of HpPNP by Zn(2)(L2O) is straightforward because a linear dependence of pseudo-first-order rate constant on dinuclear complex is observed over a wide pH range. In contrast, plots of pseudo-first-order rate constants for cleavage of HpPNP by solutions containing a 2:1 ratio of Cd(II) to L2OH as a function of increasing L2OH are curved, and second-order rate constants are obtained by fitting the kinetic data to an equation for the formation of the dinuclear Cd(II) complex as a function of pH and [L2OH]. Second-order rate constants for cleavage of HpPNP by these dinuclear complexes at pH 9.3 and 25 degrees C vary by 3 orders of magnitude in the order Cd(2)(L2O) (2.8 M(-)(1) s(-)(1)) > Zn(2)(L2O) (0.68 M(-)(1) s(-)(1)) > Cu(2)(L2O) (0.0041 M(-1) s(-1)). The relative reactivity of these complexes is discussed in terms of the different geometric preferences and Lewis acidity of the dinuclear Zn(II), Cu(II), and Cd(II) complexes, giving insight into the importance of these catalyst properties in the cleavage of phosphate diesters resembling RNA.  相似文献   

4.
New hydrophobic chiral macrocyclic ligands L1-L3 with chiral diamino and thiophene moieties have been synthesized by the Schiff base condensation approach. Protonation constants of L1 and L2 were determined by potentiometry titration. Metal-ion binding experiments exhibited that L1 and L3 are pronounced in selective recognition, Ag+, Cu2+ and Ca2+ ions among the surveyed metal ions (Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ag+, Li+, Na+, K+, and Ca2+). L1 was found to spectroscopically detect the presence of Cu2+ and Ca2+ to function as a multiple readout sensor. The detection limit for Ca2+ ions was found to be 9.8 x 10(-5) M in CH2Cl2-MeOH solution. The trimeric chiral ligand L3 has been shown to be an efficient auxiliary in a Zn(II)-mediated enantioselective Henry reaction.  相似文献   

5.
Three fluorescent probes CdABA', CdABA and ZnABA', which are structural isomers of ZnABA, have been designed with N,N-bis(2-pyridylmethyl) ethylenediamine (BPEA) as chelator and 2-aminobenzamide as fluorophore. These probes can be divided into two groups: CdABA, CdABA' for Cd(2+) and ZnABA, ZnABA' for Zn(2+). Although there is little difference in their chemical structures, the two groups of probes exhibit totally different fluorescence properties for preference of Zn(2+) or Cd(2+). In the group of Zn(2+) probes, ZnABA/ZnABA' distinguish Zn(2+) from Cd(2+) with F(Zn)(2+)-F(Cd)(2+) = 1.87-2.00. Upon interchanging the BPEA and carbamoyl groups on the aromatic ring of the fluorophore, the structures of ZnABA/ZnABA' are converted into CdABA/CdABA'. Interestingly, the metal ions selectivity of CdABA/CdABA' was switched to discriminate Cd(2+) from Zn(2+) with F(Cd)(2+)-F(Zn)(2+) = 2.27-2.36, indicating that a small structural modification could lead to a remarkable change of the metal ion selectivity. (1)H NMR titration and ESI mass experiments demonstrated that these fluorescent probers exhibited different coordination modes for Zn(2+) and Cd(2+). With CdABA' as an example, generally, upon addition of Cd(2+), the fluorescence response possesses PET pathway to display no obvious shift of maximum λ(em) in the absence or presence of Cd(2+). However, an ICT pathway could be employed after adding Zn(2+) into the CdABA' solution, resulting in a distinct red-shift of maximal λ(em).  相似文献   

6.
Complexes of CrIII and MnII of general formula [Cr(L)X2] X and [Mn(L)X2] respectively were prepared from N2O2, N2S2 and N4 donor macrocyclic ligands. The complexes have been characterized by elemental analysis, molar conductance measurements, spectral methods (i.r, mass, 1H-n.m.r, electronic spectra and e.p.r.) and magnetic measurements. The macrocyclic ligands have three different donating atom cavities, one with two unsaturated nitrogens and the other two have saturated nitrogen, oxygen and sulphur atoms. The effect of different donor atoms on the spectra and ligand field parameters is discussed. All the complexes show magnetic moments corresponding to a high-spin configuration. On the basis of spectral studies a six coordinated octahedral geometry may be assigned to these complexes.  相似文献   

7.
The complexation properties toward Hg(II) of six macrocyclic ligands, 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1), 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L2), 7-(10-methyl-9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L3), 7,7'-[9,10-anthracenediylbis(methylene)]bis-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L4), 1,4,7-trithia-11-azacyclotetradecane (L5), and 11,-(anthracen-9-ylmethyl)-1,4,7-trithia-11-azacyclotetradecane (L6), were studied. The stoichiometries of the formed species were determined from absorption and fluorescence titrations. In these anthracene-containing macrocycles, a fluorescent quenching of the emission was found upon Hg(II) addition. The X-ray crystal structure of [HgCl2(L2)] x 1/2CH2Cl2 was determined. The asymmetric unit contains two independent [HgCl2(L2)] molecules and one dichloromethane molecule. Each Hg(II) ion is coordinated by the pyridine nitrogen, the two sulfur atoms of one L2 molecule, and two chloride ions. Analytical studies using solvent extraction separation of Hg(II) from aqueous solutions were performed to determine the Hg(II) extraction capability of ligands L1, L2, and L5.  相似文献   

8.
The properties of Cu(II) and Co(II) complexes with oxygen- or nitrogen-containing macrocycles have been extensively studied; however, less attention has been paid to the study of complexes containing sulfur atoms in the first coordination sphere. Herein we present the interaction between these two metal ions and two macrocyclic ligands with N2S2 donor sets. Cu(II) and Co(II) complexes with the pyridine-containing 14-membered macrocycles 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L) and 7-(9-anthracenylmethyl)-3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L1) have been synthesized. The X-ray structural analysis of {[Co(ClO4)(H2O)(L)][Co(H2O)2(L)]}(ClO4)3 shows two different metal sites in octahedral coordination. The EPR spectra of powdered samples of this compound are typical of distorted six-coordinated Co(II) ions in a high-spin (S=3/2) configuration, with the ground state being S=1/2 (g1=5.20, g2=3.20, g3=1.95). The EPR spectrum of [Cu(ClO4)(L)](ClO4) was simulated assuming an axial g tensor (g1=g2=2.043, g3=2.145), while that of [Cu(ClO4)(L1)](ClO4) slightly differs from an axial symmetry (g1=2.025, g2=2.060, g3=2.155). These results are compatible with a Cu(II) ion in square-pyramidal coordination with N2S2 as basal ligands. Single-crystal EPR experiment performed on [Cu(ClO4)(L1)](ClO4) allowed determining the eigenvalues of the molecular g tensor associated with the copper site, as well as the two possible orientations for the tensor. On the basis of symmetry arguments, an assignment in which the eigenvectors are nearly along the Cu(II)-ligand bonds is chosen.  相似文献   

9.
Two heterocyclic cyclopentadienyl analogs with a CB2N2 skeleton, 4-methyl-1,2,3,5-tetraphenyl-1,2-diaza-3,5-diborolidine and 4-methyl-3,5-dimethylamino-1,2-diphenyl-1,2-diaza-3,5-diborolidine were prepared through cyclocondensation of the corresponding 1,1-bis(organochloroboryl)ethane with 1,2-diphenylhydrazine. The former diazadiborolidine featured a cyclopentadiene-like structure with short B-N bonds and a planar ring framework, while in the latter the B-N bonds were noticeably longer and the ring framework was considerably folded as a result of the interaction between boron and the electron donating NMe2 groups. The dimethylamino substituted diazadiborolidine could not be deprotonated due to the reduced acidity of the ring proton, however, the B-phenylated analog was easily deprotonated and the lithium, sodium and potassium 1,2-diaza-3,5-diborolyls were isolated and structurally characterized. The solid state structures of the lithium and sodium salts were similar, with an eta(1)-coordinated pi ligand and three THF molecules completing the coordination sphere of the metal. The potassium salt featured a highly unusual mono-dimensional polymeric structure with the metal pi-coordinated by the CB2N2 ligand and two of the phenyl groups on boron and nitrogen, and sigma-coordinated by one THF molecule.  相似文献   

10.
11.
Three macrocyclic ligands and their complexes with copper(II) salts (with anions Cl, NO 3 , and NCS) were prepared and investigated using a combination of microanalytical analysis, melting point, molar conductance measurement, magnetic susceptibility measurement, and electronic, IR and ESR spectral studies. Ligands L1, L2, and L3 having N4, N4O2, and N4S2 core, respectively, and all the donor atoms of these ligands are bonded with Cu, which is confirmed by a seven-line pattern observed at half-field in the frozen (H2O: MeOH = 10: 1 at pH 10) solution ESR spectrum. The polycrystalline ESR data (g = 2.20–2.27, g = 2.01–2.05, and A = 120–270) of all the complexes together with the high asymmetry geometry suggest that all complexes appear to be near the static distortion (CuN4O2 and CuN4S2 chromophore geometry). The electronic spectra of the complexes involve two bands at the same intensity corresponding to a cis-distorted octahedral geometry. A common structural feature of both ligand L2 and ligand L3 is that two different donor atoms at five-membered heterocyclic aromatic ring due to this N4O2 and N4S2 chromophore form stable six-membered chelate rings with metals via these two, Cu-O and Cu-S, new interactions comparatively to the first macrocyclic ligand, which has four-membered N,N′-chelate rings. The cyclic voltammetric studies point to a two-step electron transfer indicating the reduction of the two copper atoms to copper(I), i.e., Cu(III)Cu(II) ⇄ Cu(II)Cu(I) ⇄ Cu(I)Cu(0). The molar conductance for the complexes corresponds to 1: 2 and is nonelectrolyte in nature. The magnetic moment (μeff) of the complexes lie in the range between 1.80–1.96 μB. Finally, these complexes were screened for their antimicrobial activity against Aspergillus-niger of fungal strains. The text was submitted by the authors in English.  相似文献   

12.
Square-wave voltammetry (SWV) has been used to study the transfer of zinc(II) ion under static conditions, assisted by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine (DPT), through gel-supported microinterfaces. Microhole arrays created by laser photoablation of thin polyester films were used to support an organic gel phase prepared by addition of 1,3:2,4-dibenzylidenesorbitol (DBS) to a solution of o-nitrophenyloctyl ether (o-NPOE) with the appropriate supporting electrolyte. The results show that SWV can be used with the gel-supported microinterfaces if a gelified aqueous reference is used for the organic phase. Under such conditions a preliminary estimate of the detection limit for the determination of Zn2+ is 5 x 10(-8) mol L(-1).  相似文献   

13.
Square-wave voltammetry (SWV) has been used to study the transfer of zinc(II) ion under static conditions, assisted by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine (DPT), through gel-supported microinterfaces. Microhole arrays created by laser photoablation of thin polyester films were used to support an organic gel phase prepared by addition of 1,3?:?2,4-dibenzylidenesorbitol (DBS) to a solution of o-nitrophenyloctyl ether (o-NPOE) with the appropriate supporting electrolyte. The results show that SWV can be used with the gel-supported microinterfaces if a gelified aqueous reference is used for the organic phase. Under such conditions a preliminary estimate of the detection limit for the determination of Zn2+ is 5 × 10–8 mol L–1.  相似文献   

14.
We have described highly selective 1(4),8(11),15(18),22(25)-(1-hydroxyhexan-3-ylthio)-phthalocyanine sensors, M{Pc[α-SCH(C(3)H(7))(C(2)H(5)OH)](4)} (MPc(α-HHT)(4), where M = Zn(II) (2), Cu(II) (3) or Co(II) (4) and HHT: -SCH(C(3)H(7))(C(2)H(5)OH)). The formation of S-M-S {S = sulfur; M = Ag(I) or Pd(II)} bonds on the periphery in the case of Ag(I) and Pd(II) metal ions induces H- or J-aggregation, respectively, which results in significant changes in the absorption of the B- and, in particular, the Q-band. The binding ratios of Ag(I) to the periphery of 2 and 3 were found to be ca. 2:1 and 3:2, respectively. On the other hand, the binding ratios of Pd(II) to the periphery of the same compounds were found to be 3:1 and 4:1. The fluorescence of 2 exhibited distinct changes in response to treatment with Ag(I) and Pd(II) ions in solution. The fluorescence spectra emission intensity of 2 was quenched upon titration with Ag(I) and Pd(II) and a new emission maximum was observed upon titration with Pd(II). FTIR, (1)H-NMR, (13)C-NMR, UV-vis, MALDI-TOF MS and elemental analysis data were used to characterize the novel compounds. Transmission electron microscopy (TEM) and field-emission scanning electron microscopy (FE-SEM) were also used as complementary techniques to investigate the morphology and to image the interfacial aggregates of 2. The redox behaviours of the complexes were examined by voltammetry and in situ spectroelectrochemistry on Pt in a nonaqueous medium.  相似文献   

15.
We investigated, both in the solid state and in aqueous solution, the coordination environment and stability behavior of four macrocyclic ligands (three N(2)S(2) and one N(3)S(2)) and of the corresponding Cu(II) complexes. The structural characterization in the solid state of the copper derivatives was performed by X-Ray Absorption Spectroscopy. Copper is found to be 4-fold coordinated with a CuN(2)S(2) environment with different Cu-S distances depending on the size of the macrocyclic ring. The EXAFS technique has indicated that nitrogen and sulfur atoms are more preferable to oxygen atoms as donor systems, without the evidence of coordination of the carboxylic moieties to copper in the first shell. The joint EXAFS and XANES study of the copper(II) complex with the N(3)S(2) ligand confirms the 4-fold coordination with an additional, long Cu-N interaction. The Cu(2+) complexation constants for one ligand were determined in aqueous solution. The results indicate that the species [CuL], although isolated in the solid state, is not the most abundant at the pH of blood serum. Instead, at pH 7.4 the protonated [Cu(HL)](+) species was found to be the most relevant. The behaviour of the copper complexes in the presence of the strong copper chelating bioagent human serum albumin was also examined in order to gain information on the stability of these compounds in biological fluids.  相似文献   

16.
The metal ion affinities of a ligand in a polymer-supported reagent can be enhanced by the presence of a proximate group capable of hydrogen bonding. A new polymer-supported reagent has been synthesized by immobilizing tris(hydroxymethyl)aminomethane (Tris) onto cross-linked poly(vinylbenzyl chloride) and then phosphorylating the -OH moieties. The -NH- acts as the auxiliary group to increase the extent of complexation by the phosphate ligand. Additionally, Tris acts as a scaffold, wherein the phosphate ligands are in a known stereochemical arrangement. The Tris resin is mono-, di-, and triphosphorylated, depending on the concentration of the phosphorylating agent. The highest metal ion affinities are found with the resin having a phosphorus-to-nitrogen ratio of 2.36, consistent with one-third of the ligands being triphosphorylated and the remainder being diphosphorylated. The unphosphorylated Tris and phosphonate diester resins have no ionic affinities under the same conditions. Trivalent ions (Fe(III), Al(III), La(III), Eu(III), Lu(III)) are preferred over divalent ions (Pb(II), Cd(II), Cu(II), Zn(II)) from solutions at pH 2. The distribution coefficients of the divalent ions correlate with the Misono softness parameters, indicating that the polarizability of the phosphoryl oxygen is important to binding of the metal ions. The mechanism of complexation is probed with Fe(III) in 0.01-5 M HNO3 and HCl. The high affinities are ascribed to activation of the P=O ligand toward metal ion binding by the N-H moieties acting as auxiliary groups, coupled with intraligand cooperation among the phosphate moieties at a given site. FTIR spectra show that the P=O band at 1261 cm-1 shifts as a function of the extent of hydrogen bonding. Binding at the P=O requires a balance between activation by hydrogen bonding and availability of the lone pair electrons to the metal ions.  相似文献   

17.
The interactions of yttrium with N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] (EHPG) and N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) are investigated by using UV difference and fluorescence spectra methods in 0.1M N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (Hepes) at pH 7.4. Yttrium binding produces two UV difference peaks near 240 and 294 nm, respectively, that both are the characteristic of phenolic groups binding to yttrium. The molar extinction coefficient of Y-EHPG and Y-HBED are (15.7 +/- 0.40) x 10(3), (15.8 +/- 0.80) x 10(3)cm(-1)M(-1) at 240 nm, respectively. Using EDTA as a competitor the obtained conditional equilibrium constants of the complexes are logK(Y-EHPG) = 15.07 +/- 0.32 and logK(Y-HBED) = 15.18 +/- 0.26, respectively. However, the effects of yttrium binding on the fluorescence intensity of EHPG and HBED are quite different, the former showing a decrease but the latter an increase.  相似文献   

18.
The family of ligands containing an N2O2S2 core, namely, 1,2-di(3-Me-5-t-Bu-salicylaldimino-o-phenylthio)ethane (H2L1), 1,3-di(3-Me-5-t-Bu-salicylaldimino-o-phenylthio)propane (H2L2), 1,4-di(3-Me-5-t-Bu-salicylaldimino-o-phenylthio)butane (H2L3), and 1,2-di(3-Me-5-t-Bu-salicylaldamino-o-phenylthio)ethane (H2L4), have been prepared and complexed with a variety of vanadium chlorides and alkoxides to afford complexes of the form [V(X)L1] (X = O (1), Np-tol (2), Cl (3)), [V(O)(L2,3)] (L2 (4), L3 (5)), and [V(L4)] (6). Crystal structure determinations of H2L1 and H2L4 show the molecule to be centrosymmetric about the bridging ethane moiety, with structural determination of 1 and 3 revealing isostructural monomeric complexes in which the ligand chelates in such a way as to afford pseudo-octahedral coordination at the vanadium center. Prolonged reaction of H2L1 with [V(Np-tol)(OEt)3] led, via oxidative cleavage of the C-S bond, to the bimetallic complex [V2L1(3-Me,5-t-Bu-salicylaldimino-o-phenylthiolate)2] [VL'] (7), as characterized by single-crystal X-ray crystallography. 7 was also isolated from the reaction of H2L4 and [VO(On-Pr)3]. The ability of 1-7 to catalyze the homopolymerization of ethylene and the copolymerization of ethylene/1-hexene in the presence of dimethylaluminum chloride (DMAC) has been assessed: screening reveals that for ethylene homopolymerization 1-7 are all highly active (>1000 g/mmol.h.bar), with the highest activity (ca. 11 000 g/mmol.h.bar) observed using catalyst 3; the use of trimethyl aluminum (TMA) or methylaluminoxane (MAO) as the cocatalyst led only to poorly active systems producing negligible polymer. Analysis of the polyethylene produced showed high molecular weight linear polymers with narrow polydispersities. For ethylene/1-hexene copolymerization, activities as high as 1,190 g/mmol.h.bar were achieved (4); analysis of the copolymer indicated an incorporation of 1-hexene in the range of 5-13%.  相似文献   

19.
The nickel(II) complex of an N2S2 ligand, derived from a diazacycle, N,N'-bis(mercaptoethyl)-1,5-diazacycloheptane, (bme-dach)Ni, Ni-1', serves as a metallodithiolate ligand to NiII, CuI, ZnII, Ag, and PbII. The binding ability of the NiN2S2 ligand to the metal ions was established through spectrochemical titrations in aqueous media and compared to classical S-donor ligands. For M = Ni, Zn, Pb, binding constants, log K = ca. 2. were computed for 1:1 Ni-1'/M(solvate) adducts; for Ag+ and Cu+, the 3:2 (Ni-1')3M2 adducts were the first formed products even in water with log beta3,2 values of 26 and >30, respectively. In all cases, the binding ability of Ni-S-R is intermediate between that of a free thiolate and a free thioether. The great specificity for copper over nickel and zinc by N2S2Ni, which serves as a reasonable structural model for the distal nickel of the acetyl CoA synthase active site, relates to biochemical studies of heterogeneity (metal content and type) in various preparations of acetyl CoA synthase enzyme.  相似文献   

20.
The interaction between N,N'-ethylenebis-[2-(o-hydroxyphenolic)glycine] (EHPG) and lanthanum was studied by the difference UV spectra and fluorescence spectra. At pH 7.4, 0.01 M N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (Hepes), with the addition of 1.0 x 10(-3)M lanthanum, two new peaks were observed at 238 nm and 294 nm by absorptivity spectroscopy compared with blank solution EHPG suggesting the interaction of lanthanum and EHPG. At the same time, the reaction could be measured by fluorescence spectra. The fluorescence intensity of EHPG at 310 nm was significantly decreased in the presence of lanthanum. The 1:1 stoichiometric ratio of EHPG to lanthanum was confirmed by both fluorescence and UV titration curves. In addition, the molar absorptivity of La-EHPG at 238 nm is (1.23+/-0.01)x10(4)cm(-1)M(-1). The conditional binding constant was calculated to be log K(La-EHPG)=12.09+/-0.37 on the basis of the result of UV titration curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号