共查询到20条相似文献,搜索用时 23 毫秒
1.
Density functional theory calculations have been performed to study the interaction of small silver clusters, Ag2 ~Ag9, with HCN. The adsorption of HCN on-top site of the silver cluster, among various possible sites, is energetically preferred. The adsorption energies of HCN on the silver clusters reach a local maximum at n = 4, which is only about 0.450 eV, indicating that the adsorbed HCN molecule is weakly perturbed. The adsorbed C–N and C–H stretching frequencies are blue- and red-shifted compared with the values of free HCN, respectively. 相似文献
2.
1 INTRODUCTION The bimetallic nanoclusters are of standing inte- rest since they can exhibit catalytic, electronic and optical properties distinct from those of corre- sponding pure nanoclusters[1~4]. Palladium and pla- tinum, well known for their catalytic properties, are often used as the catalyst in different fuel cells[5~8]. Several experimental results illustrate that for the oxygen reduction reaction (ORR), which is one of the primary reactions taking place in many fuel cells and… 相似文献
3.
甲醇在Au(111)表面吸附的密度泛函研究 总被引:2,自引:0,他引:2
采用基于第一性原理的密度泛函理论和周期平板模型相结合的方法,对CH3OH分子在Au(111)表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算以及Mulliken布居分析,结果表明top位是较有利的吸附位. 吸附的CH3OH解离产生甲氧基CH3O和H, 对它们在Au(111)面的吸附进行的计算表明, bridge和fcc位分别是二者的最佳吸附位. 对过渡态的计算给出了CH3OH在Au表面解离吸附的可能机理: 首先发生 O-H 键的断裂,继而生成甲氧基中间体. 相似文献
4.
采用基于密度泛函理论(DFT)的Dmol3程序系统研究了O原子与O2在 Au19与Au20团簇上的吸附反应行为. 结果表明: O在Au19团簇顶端洞位上的吸附较Au20强; 在侧桥位吸附强度相近. O与O2在带负电Au团簇上吸附较强, 在正电团簇吸附较弱. 从O―O键长看, 当金团簇带负电时, O―O键长较长, 中性团簇次之, 正电团簇中O―O键长较短, 因而O2活化程度依次减弱. 电荷布居分析表明, Au团簇带负电时, O与O2得电子数较中性团簇多, 而团簇带正电时, 得电子数较少. 差分电荷密度(CDD)表明, O2与Au团簇作用时, 金团簇失电子, O2的π*轨道得电子, 使O―O键活化. O2在Au19-团簇上解离反应活化能为1.33 eV, 较中性团簇低0.53 eV; 而在Au19+上活化能为2.27 eV, 较中性团簇高0.41 eV, 这与O2在不同电性Au19团簇O―O键活化规律相一致. 相似文献
5.
A combined method of density functional theory (DFT) and statistics integral equation (SIE) for the determination of the pore size distribution (PSD) is developed based on the experimental adsorption data of nitrogen on activated mesocarbon microbead (AMCMB) at 77K. The pores of AMCMB are described as slit-shaped with PSD.Based on the PSD, methane adsorption and phase behavior are studied by the DFT method. Both nitrogen and methane molecules are modeled as Lennard-Jones spherical molecules, and the well-known Steele‘s 10-4-3 potential is used to represent the interaction between the fluid molecule and the solid wall. In order to test the combined method and the PSD model, the Intelligent Gravimetric Analyzer (IGA-003) was used to measure the adsorption of methane on the AMCMB. The DFT results are in good agreement with the experimental data. Based on these facts,we predict the adsorption amount of methane, which can reach 32.3ω at 299K and 4 MPa. The results indicate that the AMCMBs are a good candidate for adsorptive storage of methane and natural gas. In addition, the capillary condensation and hysteresis phenomenon of methane are also observed at 74.05K. 相似文献
6.
金属-有机骨架材料中甲烷吸附机理的密度泛函理论研究 总被引:3,自引:0,他引:3
采用密度泛函理论研究了甲烷在MOF-5中的吸附位置、吸附构型和吸附能. 结果表明: 吸附位置主要有四种, Zn4O簇为最佳吸附位, 其吸附能为17.38 kJ•mol-1, 高于沸石中的甲烷吸附能. 从吸附能与MOF-5的结构关系分析得出: 在苯环中引入给电子基团, 有利于增强甲烷与MOFs的吸附作用; 引入含氧等极性官能团, 将增加甲烷吸附位, 有利于提高吸附储存量. 相似文献
7.
8.
The interaction of Aun+ (n ≤ 20) clusters with Ar is investigated by combining mass spectrometric experiments and density functional theory calculations. We show that the inert Ar atom forms relatively strong bonds with Aun+. The strength of the bond strongly varies with the cluster size and is governed by a fine interplay between geometry and electronic structure. The chemical bond between Aun+ and Ar involves electron transfer from Ar to Au, and a stronger interaction is found when the Au adsorption site has a higher positive partial charge, which depends on the cluster geometry. Au15+ is a peculiar cluster size, which stands out for its much stronger interaction with Ar than its neighbors, signaled by a higher abundance in mass spectra and a larger Ar adsorption energy. This is shown to be a consequence of a low-coordinated Au adsorption site in Au15+, which possesses a large positive partial charge. 相似文献
9.
10.
1INTRODUCTION Methoxy(CH3O)has been identified as the first intermediate in the decomposition of methanol on extensive list of clean transition metal surfaces,such as Ni(100)[1],Cu(100)[2,3],Cu(111)[4],Ag(111)[5],Au(110)[6],Pd(111)[7]and Ru(0001)[8].The electronic structure of the metal is a determining factor in OH bond scission.In fact,group IB clean surfaces have shown very low activity towards this reaction,al-though there are reports on low amounts of methoxy formed on clean Cu(… 相似文献
11.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Au(111)表面的吸附构型和电子结构. 系统地计算了S原子在不同位置以不同方式吸附的系列构型, 计算结果表明, CH3SH分子倾向于吸附在top位上, S-C键相对于Au表面法线的夹角为62°~78°|而S-H键断裂后CH3S_H则倾向于吸附在bri-fcc位上, S-C键相对于Au(111)表面法线的夹角为49°~57°. 比较分析CH3SH分子和CH3S_H的吸附, 发现CH3SH分子倾向于不解离吸附, 表面温度的提升和缺陷的出现可能促使S-H键的断裂. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S-H键断裂后S原子和表面的键合强于S-H键未断裂时S原子和表面的键合. 扫描隧道显微镜(STM)图像模拟显示了CH3SH和CH3S_H在Au(111)表面吸附的3个典型的STM图像. 相似文献
12.
1 INTRODUCTION Cyanide, CN, is an important free-radical mole-cule of one carbon chemistry, organic chemistry, free-radical chemistry and cosmochemistry. And the im-portant industrial processes, such as the Andrussovreaction, depend on the reactivity of CN bond[1]. Thechemistry of cyanide is also important in the surfacechemistry of a number of C- and N-containing sys-tems[1, . During the past decade, the adsorption of 2]CN and CN-containing molecules on transition metalsurfa… 相似文献
13.
采用密度泛函理论探讨了 2-氯噻吩分子在 Rh(111) 表面上吸附行为. 结果表明, 平行的 hol 位及 bridge 位上的吸附最稳定. 吸附后, 2-氯噻吩键长发生明显变化, 分子平面被扭曲, 分子中 C–H(Cl, S) 相对于金属表面倾斜上翘. 垂直吸附模式不如平行吸附模式稳定, 但吸附后噻吩环未发生变形. hol 及 bridge 吸附模式下 2-氯噻吩的芳香性已遭破坏, 噻吩环上的碳原子呈现准 sp3 杂化. 在平行的 hol 位吸附后, 2-氯噻吩环累计得到 0.77 个电子, 而 Rh(111) 表面累计失去 1.19 个电子. 相似文献
14.
Twenty kinds of adsorptions of HCN on the Fe(100), Fe(111) and Fe(110) surfaces at the 1/4 monolayer coverage are found using the density functional theory. For Fe(100), the adsorption energy of the most stable configuration where the HCN locates at the fourfold site with the C-N bonded to four Fe atoms is 1.928 eV. The most favored adsorption structure for HCN on Fe(111) is f-η3(N)-h-η3(C), in which the C-N bond is almost parallel to the surface, and the adsorption energy is 1.347 eV. On Fe(110), the adsorption energy in the most stable configuration in which HCN locates at the two long-bridge sites is 1.777 eV. The adsorption energy of the parallel orientation for HCN is larger than that of the perpendicular configuration. The binding mechanism of HCN on the Fe(100), Fe(111) and Fe(110) surfaces is also analyzed by Mulliken charge population and the density of states in HCN. The result indicates that the configurations in which the adsorbed HCN becomes the non-linear are beneficial to the formation of the addition reaction for hydrogen. The nature that the introduction of Fe into the catalyst could increase the catalytic activity of the bimetallic catalyst in the addition reaction of hydrogen for nitriles is revealed. 相似文献
15.
Adsorption of argon at its boiling point in finite cylindrical pores is considered by means of the non-local density functional
theory (NLDFT) with a reference to MCM-41 silica. The NLDFT was adjusted to amorphous solids, which allowed us to quantitatively
describe argon adsorption isotherm on nonporous reference silica in the entire bulk pressure range. In contrast to the conventional
NLDFT technique, application of the model to cylindrical pores does not show any layering before the phase transition in conformity
with experimental data. The finite pore is modeled as a cylindrical cavity bounded from its mouth by an infinite flat surface
perpendicular to the pore axis. The adsorption of argon in pores of 4 and 5 nm diameters is analyzed in canonical and grand
canonical ensembles using a two-dimensional version of NLDFT, which accounts for the radial and longitudinal fluid density
distributions. The simulation results did not show any unusual features associated with accounting for the outer surface and
support the conclusions obtained from the classical analysis of capillary condensation and evaporation. That is, the spontaneous
condensation occurs at the vapor-like spinodal point, which is the upper limit of mechanical stability of the liquid-like
film wetting the pore wall, while the evaporation occurs via a mechanism of receding of the semispherical meniscus from the
pore mouth and the complete evaporation of the core occurs at the equilibrium transition pressure. Visualization of the pore
filling and empting in the form of contour lines is presented. 相似文献
16.
Cu(100)表面吸附HCN和HNC的密度泛函研究 总被引:1,自引:0,他引:1
采用密度泛函方法,以原子簇Cul4为模拟表面,对氢氰酸(HCN)和异氰酸(HNC) 在Cu(100)表面上不同吸附位的吸附情况进行了研究.结果表明:HCN和HNC分别通 过原子N和C垂直吸附在表面上时,顶位是其最佳吸附位,且是吸附能为18.5kJ· mol^-1和42.6kJ·mol^-1的弱吸附,计算结果与实验相符.C—N(HCN)键或N—C (NHC)键偏离垂直的分子轴线的吸附体系均不稳定.顶位吸附时HCN和HNC分子的C- N键振动频率均发生蓝移. 相似文献
17.
18.
甲硫醇在Au(111)表面不同覆盖度下吸附的第一性原理研究 总被引:1,自引:0,他引:1
采用第一性原理方法研究了五种覆盖度下甲硫醇在Au(111)面的吸附构型和吸附能. 分别对于S-H解离前CH3SH和S-H解离后CH3S, 计算其在不同覆盖度下的吸附结构和能量. 结果显示各种覆盖度下CH3SH都优先吸附于top位, 倾斜角为70°±2°, 在低覆盖度(1/12, 1/9, 1/8)下的吸附能最大, 为0.33~0.35 eV; 而CH3S在各种覆盖度下稳定吸附于bri-fcc位, 倾斜角为48.3°~58.5°, 低覆盖度下的吸附能为2.08 eV. 对于CH3SH和CH3S的吸附, 吸附能均随覆盖度的增大而减小. 重点研究了范德华力对高覆盖度吸附的影响. 在覆盖度为1/3时, 采用DFT-D2方法, 分别计算了CH3SH和CH3S的吸附, 结果显示范德华力使吸附物和Au表面的距离减小, 同时使CH3SH和CH3S的吸附能分别增大为0.59 eV和2.27 eV. DFT-D2方法修正使CH3SH的结果更接近实验结论, 但使CH3S的结果偏离实验值. 相似文献
19.
We applied periodic density-functional theory to investigate the adsorption of C2H2 on the Cu/Pt bimetallic and monometallic surfaces, including Cu-Pt-Pt and Pt-Cu-Pt representing the monolayer Cu on the Pt surface and subsurface Cu in the Pt surface, respectively. For the Pt(111) and Pt-Cu-Pt surfaces, C2H2 is preferentially a 3-fold "parallel-bridge" configuration, and a "μ-bridge" structure exists above the Cu(111) and Cu-Pt-Pt surfaces. The adsorption energy of C2H2 on these surfaces decreases in the order Pt(111) > Cu-Pt-Pt > Pt-Cu-Pt > Cu(111). The analysis of density of states, charge, and vibrational frequencies showed obviously weakening of the adsorbed C-C bond and high sp2 character on the carbon atom. Furthermore, when the top-layer compositions are equal, the nearer the EF d-band center is, the larger the C2H2 adsorption energy will be. 相似文献
20.
运用密度泛函理论中广义梯度近似的 PW91 方法结合周期平板模型, 研究了 NiFeB2 合金簇在 TiO2(110) 面的吸附模式. 结果表明, NiFeB2 平行吸附在 TiO2 面的 Ot-Ot 位最稳定, 吸附能为 526.4 kJ/mol. 为了探明 NiFeB2/TiO2 是否具有催化氧化 CO 活性, 进一步研究了 CO 和 O2 在 NiFeB2/TiO2 面的共吸附行为. 结果表明, CO 和 O2 以 Eley-Rideal 机理共吸附在 Fe 上时, 易形成碳酸盐, 而以 Langmuir-Hinshelwood 机理共吸附在 Fe 上时, O2 发生分解, 与 Fe, Ni 和 B 形成稳定的六元环. 相似文献