首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was recently proved in [1,2] that the third grade fluids equations have a unique global bidimensional solution provided that the initial velocity belongs to the Sobolev space H2. Here, we complete this result by proving that this solution preserves the Sobolev regularity of the initial data, i.e., if the initial velocity belongs to Hm, m ≥ 2, then the evolved velocity v(t, ·) also belongs to Hm for every time t.  相似文献   

2.
This work deals with the system (?Δ) m u?= a(x) v p , (?Δ) m v?=?b(x)?u q with Dirichlet boundary condition in a domain ${\Omega\subset\mathbb{R}^n}$ , where Ω is a ball if n ≥ 3 or a smooth perturbation of a ball when n?=?2. We prove that, under appropriate conditions on the parameters (a, b, p, q, m, n), any nonnegative solution (u, v) of the system is bounded by a constant independent of (u, v). Moreover, we prove that the conditions are sharp in the sense that, up to some border case, the relation on the parameters are also necessary. The case m?=?1 was considered by Souplet (Nonlinear Partial Differ Equ Appl 20:464–479, 2004). Our paper generalize to m ≥ 1 the results of that paper.  相似文献   

3.
In this paper, the authors investigate the condition number with their condition numbers for weighted Moore-Penrose inverse and weighted least squares solution of $\mathop {\min }\limits_x ||Ax - b||_M $ , whereA is a rank-deficient complex matrix in ?m × n andb a vector of lengthm in ?m,x a vector of length n in ?n. For the normwise condition number, the sensitivity of the relative condition number itself is studied, the componentwise perturbation is also investigated.  相似文献   

4.
We investigate the existence of nonnegative weak solutions to the problem ut=Δ(um)−p|∇u| in Rn×(0,∞) with +(1−2/n)<m<1. It will be proved that: (i) When 1<p<2, if the initial datum u0D(Rn) then there exists a solution; (ii) When 1<p<(2+mn)/(n+1), if the initial datum u0(x) is a bounded and nonnegative measure then the solution exists; (iii) When (2+mn)/(n+1)?p<2, if the initial datum is a Dirac mass then the solution does not exist. We also study the large time behavior of the L1-norm of solutions for 1<p?(2+mn)/(n+1), and the large time behavior of t1/βu(⋅,t)−Ec(⋅,t)L for (2+mn)/(n+1)<p<2.  相似文献   

5.
We show that any m × n matrix A, over any field, can be written as a product, LSP, of three matrices, where L is a lower triangular matrix with l's on the main diagonal, S is an m × n matrix which reduces to an upper triangular matrix with nonzero diagonal elements when the zero rows are deleted, and P is an n × n permutation matrix. Moreover, L, S, and P can be found in O(mα?1n) time, where the complexity of matrix multiplication is O(mα). We use the LSP decomposition to construct fast algorithms for some important matrix problems. In particular, we develop O(mα?1n) algorithms for the following problems, where A is any m × n matrix: (1) Determine if the system of equations Ax = b (where b is a column vector) has a solution, and if so, find one such solution. (2) Find a generalized inverse, A1, of A (i.e., AA1A = A). (3) Find simultaneously a maximal independent set of rows and a maximal independent set of columns of A.  相似文献   

6.
Given any natural number q > 3 we show there exists an integer t ? [2log2(q ? 3)] such that an Hadamard matrix exists for every order 2sq where s > t. The Hadamard conjecture is that s = 2.This means that for each q there is a finite number of orders 2υq for which an Hadamard matrix is not known. This is the first time such a statement could be made for arbitrary q.In particular it is already known that an Hadamard matrix exists for each 2sq where if q = 2m ? 1 then s ? m, if q = 2m + 3 (a prime power) then s ? m, if q = 2m + 1 (a prime power) then s ? m + 1.It is also shown that all orthogonal designs of types (a, b, m ? a ? b) and (a, b), 0 ? a + b ? m, exist in orders m = 2t and 2t+2 · 3, t ? 1 a positive integer.  相似文献   

7.
A classical binary Preparata code P2(m) is a nonlinear (2m+1,22(2m-1-m),6)-code, where m is odd. It has a linear representation over the ring Z4 [Hammons et al., The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301-319]. Here for any q=2l>2 and any m such that (m,q-1)=1 a nonlinear code Pq(m) over the field F=GF(q) with parameters (q(Δ+1),q2(Δ-m),d?3q), where Δ=(qm-1)/(q-1), is constructed. If d=3q this set of parameters generalizes that of P2(m). The equality d=3q is established in the following cases: (1) for a series of initial admissible values q and m such that qm<2100; (2) for m=3,4 and any admissible q, and (3) for admissible q and m such that there exists a number m1 with m1|m and d(Pq(m1))=3q. We apply the approach of [Nechaev and Kuzmin, Linearly presentable codes, Proceedings of the 1996 IEEE International Symposium Information Theory and Application Victoria, BC, Canada 1996, pp. 31-34] the code P is a Reed-Solomon representation of a linear over the Galois ring R=GR(q2,4) code P dual to a linear code K with parameters near to those of generalized linear Kerdock code over R.  相似文献   

8.
We study the structure of positive solutions to the equation ?mΔmu-um-1+f(u)=0 with homogeneous Neumann boundary condition. First, we show the existence of a mountain-pass solution and find that as ?→0+ the mountain-pass solution develops into a spike-layer solution. Second, we prove that there is an uniform upper bound independent of ? for any positive solution to our problem. We also present a Harnack-type inequality for the positive solutions. Finally, we show that if 1<m?2 holds and ? is sufficiently large, any positive solution must be a constant.  相似文献   

9.
A potential theory for the equation (dd c u)mβ n?m = n , 1 ≤ mn, is developed. The corresponding notions of m-capacity and m-subharmonic functions are introduced, and their properties are studied.  相似文献   

10.
In this paper we study the large time behavior of non-negative solutions to the Cauchy problem of utumuq in RN×(0,∞), where m>1 and q=qcm+2/N is a critical exponent. For non-negative initial value u(x,0)=u0(x)∈L1(RN), we show that the solution converges, if u0(x)(1+|x|)k is bounded for some k>N, to a unique fundamental solution of utum, independent of the initial value, with additional logarithmic anomalous decay exponent in time as t→∞.  相似文献   

11.
We prove the Hölder continuity of the solution to complex Hessian equation with the right hand side in L p , \(p>\frac {n}{m}\) , 1 < m < n, in a m-strongly pseudoconvex domain in ? n under some additional conditions on the density near the boundary and on the boundary data.  相似文献   

12.
We study the convergence of the false discovery proportion (FDP) of the Benjamini-Hochberg procedure in the Gaussian equi-correlated model, when the correlation ρm converges to zero as the hypothesis number m grows to infinity. In this model, the FDP converges to the false discovery rate (FDR) at rate {min(m,1/ρm)}1/2, which is different from the standard convergence rate m1/2 holding under independence.  相似文献   

13.
14.
We establish the critical Fujita exponents for the solution of the porous medium equation ut=Δum, xR+N, t>0, subject to the nonlinear boundary condition −∂um/∂x1=up, x1=0, t>0, in multi-dimension.  相似文献   

15.
A method is described for the numerical evaluation of integrals of the form ∫ ?1 1 f(x)K(m,x)dx, wheref(x) is smooth in [?1,1], whileK(m,x) is highly oscillatory for large values ofm.  相似文献   

16.
In this article we evaluate the Fourier transforms of retarded Lorentz-invariant functions (and distributions) as limits of Laplace transforms. Our method works generally for any retarded Lorentz-invariant functions φ(t) (t?Rn) which is, besides, a continuous function of slow growth. We give, among others, the Fourier transform of GR(t, α, m2, n) and GA(t, α, m2, n), which, in the particular case α = 1, are the characteristic functions of the volume bounded by the forward and the backward sheets of the hyperboloid u = m2 and by putting α = ?k are the derivatives of k-order of the retarded and the advanced-delta on the hyperboloid u = m2. We also obtain the Fourier transform of the function W(t, α, m2, n) introduced by M. Riesz (Comm. Sem. Mat. Univ. Lund4 (1939)). We finish by evaluating the Fourier transforms of the distributional functions GR(t, α, m2, n), GA(t, α, m2, n) and W(t, α, m2, n) in their singular points.  相似文献   

17.
The nonlinear Klein-Gordon equation ?μ?μΦ + M2Φ + λ1Φ1?m + λ2Φ1?2m = 0 has the exact formal solution Φ = [u2m1um/(m ? 2)M212/(m?2)2M42/4(m ? 1)M2]1/mu?1, m ≠ 0, 1, 2, where u and v?1 are solutions of the linear Klein-Gordon equation. This equation is a simple generalization of the ordinary second order differential equation satisfied by the homogeneous function y = [aum + b(uv)m/2 + cvm]k/m, where u and v are linearly independent solutions of y″ + r(x) y′ + q(x) y = 0.  相似文献   

18.
In this paper we present a parallel algorithm for parallel computing the solution of the general restricted linear equations Ax=b,xT, where T is a subspace of ? n and bAT. By this algorithm the solution x=A T,S (2) b is obtained in n(log?2 m+log?2(n?s+1)+7)+log?2 m+1 steps with P=mn processors when m≥2(n?1) and with P=2n(n?1) processors otherwise.  相似文献   

19.
Let us denote by R(k, ? λ)[R(k, ? λ)] the maximal number M such that there exist M different permutations of the set {1,…, k} such that any two of them have at least λ (at most λ, respectively) common positions. We prove the inequalities R(k, ? λ) ? kR(k ? 1, ? λ ? 1), R(k, ? λ) ? R(k, ? λ ? 1) ? k!, R(k, ? λ) ? kR(k ? 1, ? λ ? 1). We show: R(k, ? k ? 2) = 2, R(k, ? 1) = (k ? 1)!, R(pm, ? 2) = (pm ? 2)!, R(pm + 1, ? 3) = (pm ? 2)!, R(k, ? k ? 3) = k!2, R(k, ? 0) = k, R(pm, ? 1) = pm(pm ? 1), R(pm + 1, ? 2) = (pm + 1)pm(pm ? 1). The exact value of R(k, ? λ) is determined whenever k ? k0(k ? λ); we conjecture that R(k, ? λ) = (k ? λ)! for k ? k0(λ). Bounds for the general case are given and are used to determine that the minimum of |R(k, ? λ) ? R(k, ? λ)| is attained for λ = (k2) + O(klog k).  相似文献   

20.
The symbol C(m1 n 1m2 n 2...ms n s) denotes a 2-regular graph consisting ofn i cycles of lengthm i , i=1, 2,…,s. In this paper, we give some construction methods of cyclic(K v ,G)-designs, and prove that there exists a cyclic(K v , G)-design whenG=C((4m 1) n 1(4m 2) n 2...(4m s ) n s andv ≡ 1 (mod 2¦G¦).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号