首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper dynamical critical phenomena of the Gaussian model with long-range interactions decaying as 1/rd δ (δ> 0) on d-dimensional hypercubic lattices (d = 1, 2, and 3) are studied. First, the critical points are exactly calculated, and it is found that the critical points depend on the value of δ and the range of interactions. Then the critical dynamics is considered. We calculate the time evolutions of the local magnetizations and the spin-spin correlation functions, and further the dynamic critical exponents are obtained. For one-, two- and three-dimensional lattices, it is found that the dynamic critical exponents are all z = 2 if δ> 2, which agrees with the result when only considering nearest neighboring interactions, and that they are all δ if 0 <δ< 2. It shows that the dynamic critical exponents are independent of the spatial dimensionality but depend on the value of δ.  相似文献   

2.
赵纲领  陈立群  傅景礼  洪方昱 《中国物理 B》2013,22(3):30201-030201
In this paper,Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated.Firstly,the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices.Secondly,for cases of the two lattices,based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates,we present the quasi-extremal equation,the discrete analogues of Noether identity,Noether theorems,and the Noether conservation laws of the systems.Thirdly,in cases of the two lattices,we study the Mei symmetry in which we give the discrete analogues of the criterion,the theorem,and the conservative laws of Mei symmetry for the systems.Finally,an example is discussed for the application of the results.  相似文献   

3.
We propose the finite-size scaling of correlation functions in finite systems near their critical points.At a distance r in a ddimensional finite system of size L,the correlation function can be written as the product of|r|~(-(d-2+η))and a finite-size scaling function of the variables r/L and tL~(1/ν),where t=(T-T_c)/T_c,ηis the critical exponent of correlation function,andνis the critical exponent of correlation length.The correlation function only has a sigificant directional dependence when|r|is compariable to L.We then confirm this finite-size scaling by calculating the correlation functions of the two-dimensional Ising model and the bond percolation in two-dimensional lattices using Monte Carlo simulations.We can use the finite-size scaling of the correlation function to determine the critical point and the critical exponentη.  相似文献   

4.
In this paper, we report the dynamical behaviours of a four-dimenslonal autonomous continuous dissipative system analysed when the parameter is varied in the range we are interested in. The system changes its dynamical modes between periodic motion and quasiperiodic motion. Furthermore, the existence of two-torus is investigated numerically by means of Lyapunov exponents. By taking advantage of phase portraits and Poincaré sections, two types of the two-torus are observed and proved to have the structure of ring torus and horn torus, both of which are known to be the standard tori.  相似文献   

5.
With both additive and multiplicative noise excitations, the effect on the chaotic behaviour of the dynamical system is investigated in this paper. The random Melnikov theorem with the mean-square criterion that applies to a type of dynamical systems is analysed in order to obtain the conditions for the possible occurrence of chaos. As an example, for the Duffing system, we deduce its concrete expression for the threshold of multiplicative noise amplitude for the rising of chaos, and by combining figures, we discuss the influences of the amplitude, intensity and frequency of both bounded noises on the dynamical behaviour of the Duffing system separately. Finally, numerical simulations are illustrated to verify the theoretical analysis according to the largest Lyapunov exponent and Poincaré map.  相似文献   

6.
Within the framework of the effective-field theory with correlations,we study the ferromagnetic spin-2 randomfield Ising model (RFIM) in the presence of a crystal field on honeycomb (z=3),square(z=4) and simple cubic(z=6) lattices.The effects of the crystal field and the longitudinal random field on the phase diagrams are investigated.Some characteristic features of the phase diagrams,such as the tricritical phenomena,reentrant phenomena and existence of two tricritical points,are found.  相似文献   

7.
郭龙  蔡勖 《中国物理快报》2009,26(8):373-376
It is shown that many real complex networks share distinctive features, such as the small-world effect and the heterogeneous property of connectivity of vertices, which are different from random networks and regular lattices. Although these features capture the important characteristics of complex networks, their applicability depends on the style of networks. To unravel the universal characteristics many complex networks have in common, we study the fractal dimensions of complex networks using the method introduced by Shanker. We find that the average 'density' (p(r ) ) of complex networks follows a better power-law function as a function of distance r with the exponent dl, which is defined as the fractal dimension, in some real complex networks. Furthermore, we study the relation between df and the shortcuts Nadd in small-world networks and the size N in regular lattices. Our present work provides a new perspective to understand the dependence of the fractal dimension df on the complex network structure.  相似文献   

8.
<正>The formation of giant clusters,namely the percolation phase transition,is one of the most widely studied critical phenomena on networks.The critical behaviors of percolation in oneand two-dimensional lattices have been given in the book[1].For d-dimensional lattices,the critical exponents of percolation change with d until the upper critical dimension du=6,above which they are independent of d and become meanfield like.It is also well known that the critical behaviors  相似文献   

9.
This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomic molecular predissociation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.  相似文献   

10.
In this paper, the synchronization of the fractional-order generalized augmented Lti system is investigated. Based on the predictor--corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent spectra, and Poincar6 maps of the fractional-order system and find that a four-wing chaotic attractor exists in the system when the system pa- rameters change within certain ranges. Further, by varying the system parameters, rich dynamical behaviors occur in the 2.7-order system. According to the stability theory of a fractional-order linear system, and adopting the linearization by feedback method, we have designed a nonlinear feedback controller in our theoretical analysis to implement the synchro- nization of the drive system with the response system. In addition, the synchronization is also shown by an electronic circuit implementation for the 2.7-order system. The obtained experiment results accord with the theoretical analyses, which further demonstrate the feasibility and effectiveness of the proposed synchronization scheme.  相似文献   

11.
In this paper dynamical critical phenomena of the Gaussian model with long-range interactions decaying as 1/rd+δ (δ>0) on d-dimensional hypercubic lattices (d=1, 2, and 3) are studied. First, the critical points are exactly calculated, and it is found that the critical points depend on the value of δ and the range of interactions. Then the critical dynamics is considered. We calculate the time evolutions of the local magnetizations and the spin-spin correlation functions, and further the dynamic critical exponents are obtained. For one-, two- and three-dimensional lattices, it is found that the dynamic critical exponents are all z=2 if δ>2, which agrees with the result when only considering nearest neighboring interactions, and that they are all δ if 0<δ<2. It shows that the dynamic critical exponents are independent of the spatial dimensionality but depend on the value of δ.  相似文献   

12.
We show that the Hertz phi(4) theory of quantum criticality is incomplete as it misses anomalous nonlocal contributions to the interaction vertices. For antiferromagnetic quantum transitions, we found that the theory is renormalizable only if the dynamical exponent z=2. The upper critical dimension is still d=4 - z=2; however, the number of marginal vertices at d=2 is infinite. As a result, the theory has a finite anomalous exponent already at the upper critical dimension. We show that for d<2 the Gaussian fixed point splits into two non-Gaussian fixed points. For both fixed points, the dynamical exponent remains z=2.  相似文献   

13.
A general scenario that leads to Coulomb quantum criticality with the dynamical critical exponent z = 1 is proposed. I point out that the long-range Coulomb interaction and quenched disorder have competing effects on z, and that balance between the two may lead to charged quantum critical points at which z = 1 exactly. This is illustrated with the calculation for the Josephson junction array Hamiltonian in dimensions D = 3 - epsilon. Precisely in D = 3, however, the above simple result breaks down, and z > 1. Relation to other studies is discussed.  相似文献   

14.
We characterize the non-Ohmic portion of the conductivity at temperatures T<1 K in the highly correlated transition metal chalcogenide Ni(S,Se)(2). Pressure tuning of the T = 0 metal-insulator transition reveals the influence of the quantum critical point and permits a direct determination of the dynamical critical exponent z = 2.7(+0.3)(-0.4). Within the framework of finite temperature scaling, we find that the spatial correlation length exponent nu and the conductivity exponent &mgr; differ.  相似文献   

15.
We present experimental data and a theoretical interpretation of the conductance near the metal-insulator transition in thin ferromagnetic Gd films of thickness b ≈ 2-10 nm. A large phase relaxation rate caused by scattering of quasiparticles off spin-wave excitations renders the dephasing length L(?) ? b in the range of sheet resistances considered, so that the effective dimension is d = 3. The conductivity data at different stages of disorder obey a fractional power-law temperature dependence and collapse onto two scaling curves for the metallic and insulating regimes, indicating an asymmetric metal-insulator transition with two distinctly different critical exponents; the best fit is obtained for a dynamical exponent z ≈ 2.5 and a correlation (localization) length critical exponent ν- ≈ 1.4 (ν+ ≈ 0.8) on the metallic (insulating) side.  相似文献   

16.
In theoretical biology, robustness refers to the ability of a biological system to function properly even under perturbation of basic parameters (e.g., temperature or pH), which in mathematical models is reflected in not needing to fine-tune basic parameter constants; flexibility refers to the ability of a system to switch functions or behaviors easily and effortlessly. While there are extensive explorations of the concept of robustness and what it requires mathematically, understanding flexibility has proven more elusive, as well as also elucidating the apparent opposition between what is required mathematically for models to implement either. In this paper we address a number of arguments in theoretical neuroscience showing that both robustness and flexibility can be attained by systems that poise themselves at the onset of a large number of dynamical bifurcations, or dynamical criticality, and how such poising can have a profound influence on integration of information processing and function. Finally, we examine critical map lattices, which are coupled map lattices where the coupling is dynamically critical in the sense of having purely imaginary eigenvalues. We show that these map lattices provide an explicit connection between dynamical criticality in the sense we have used and “edge of chaos” criticality.  相似文献   

17.
We consider spin and electronic properties of itinerant electron systems, described by the spin-fermion model, near the antiferromagnetic critical point. We expand in the inverse number of hot spots in the Brillouin zone, N, and present the results beyond the previously studied N = infinity limit. We found two new effects: (i) Fermi surface becomes nested at hot spots, and (ii) vertex corrections give rise to anomalous spin dynamics and change the dynamical critical exponent from z = 2 to z>2. To first order in 1/N we found z = 2N/(N-2) which for a physical N = 8 yields z approximately 2.67.  相似文献   

18.
In this Letter, we derive exponent inequalities relating the dynamic exponent z to the steady state exponent Γ for a general class of stochastically driven dynamical systems. We begin by deriving a general exact inequality, relating the response function and the correlation function, from which the various exponent inequalities emanate. We then distinguish between two classes of dynamical systems and obtain different and complementary inequalities relating z and Γ. The consequences of those inequalities for a wide set of dynamical problems, including critical dynamics and Kardar-Parisi-Zhang-like problems, are discussed.  相似文献   

19.
We use bosonization to derive the effective field theory that properly describes ferromagnetic transition in one-dimensional itinerant electron systems. The resultant theory is shown to have dynamical exponent z = 2 at tree level and upper critical dimension dc = 2. Thus one dimension is below the upper critical dimension of the theory, and the critical behavior of the transition is controlled by an interacting fixed point, which we study via epsilon expansion. Comparisons will be made with the Hertz-Millis theory, which describes the ferromagnetic transition in higher dimensions.  相似文献   

20.
We report results of large-scale Monte Carlo simulations of superfluid-insulator transitions in disordered commensurate 2D bosonic systems. In the off-diagonal disorder case, we find that the transition is to a gapless incompressible insulator, and its dynamical critical exponent is z=1.5(2). In the diagonal-disorder case, we prove the conjecture that rare statistical fluctuations are inseparable from critical fluctuations on the largest scales and ultimately result in crossover to the generic universality class (apparently with z=2). However, even at strong disorder, the universal behavior sets in only at very large space-time distances. This explains why previous studies of smaller clusters mimicked a direct superfluid-Mott-insulator transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号