首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Received: February 19, 1996  相似文献   

2.
This paper deals with several bicriteria open-shop scheduling problems where jobs are pre-emptable and their corresponding time-windows must be strictly respected. The criteria are a performance cost and the makespan. Network flow approaches are used in a lexmin procedure with a bounded makespan and the considered bicriteria problems are solved. Finally, the computational complexity of the algorithm and a numerical example are reported.  相似文献   

3.
Given a directed edge-weighted graph and k source-sink pairs, the Minimum Directed Multicut Problem is to find an edge subset with minimal weight, that separates each source-sink pair. Determining the minimum multicut in directed or undirected graphs is NP-hard. The fractional version of the minimum multicut problem is dual to the maximum multicommodity flow problem. The integrality gap for an instance of this problem is the ratio of the minimum weight multicut to the minimum weight fractional multicut; trivially this gap is always at least 1 and it is easy to show that it is at most k. In the analogous problem for undirected graphs this upper bound was improved to O(log k).In this paper, for each k an explicit family of examples is presented each with k source-sink pairs for which the integrality gap can be made arbitrarily close to k. This shows that for directed graphs, the trivial upper bound of k can not be improved.* This work was supported in part by NSF grant CCR-9700239 and by DIMACS. This work was done while a postdoctoral fellow at DIMACS.  相似文献   

4.
A typical problem in network design is to find a minimum-cost sub-network H of a given network G such that H satisfies some prespecified connectivity requirements. Our focus is on approximation algorithms for designing networks that satisfy vertex connectivity requirements. Our main tool is a linear programming relaxation of the following setpair formulation due to Frank and Jordan: a setpair consists of two subsets of vertices (of the given network G); each setpair has an integer requirement, and the goal is to find a minimum-cost subset of the edges of G sucht hat each setpair is covered by at least as many edges as its requirement. We introduce the notion of skew bisupermodular functions and use it to prove that the basic solutions of the linear program are characterized by “non-crossing families” of setpairs. This allows us to apply Jain’s iterative rounding method to find approximately optimal integer solutions. We give two applications. (1) In the k-vertex connectivity problem we are given a (directed or undirected) graph G=(V,E) with non-negative edge costs, and the task is to find a minimum-cost spanning subgraph H such that H is k-vertex connected. Let n=|V|, and let ε<1 be a positive number such that k≤(1−ε)n. We give an -approximation algorithm for both problems (directed or undirected), improving on the previous best approximation guarantees for k in the range . (2)We give a 2-approximation algorithm for the element connectivity problem, matching the previous best approximation guarantee due to Fleischer, Jain and Williamson. * Supported in part by NSERC researchgran t OGP0138432. † Supported in part by NSF Career Award CCR-9875024.  相似文献   

5.
The FFD algorithm is one of the most famous algorithms for the classical bin packing problem. In this paper,some versions of the FFD algorithm are considered in several bin packing problems. Especially,two of them applied to the bin packing problem with kernel items are analyzed. Tight worst-case performance ratios are obtained.  相似文献   

6.
In this note, the author proves that the inverse problem of submodular function on digraphs with l∞ objective function can be solved by strongly polynomial algorithm. The result shows that most inverse network optimization problems with l∞ objective function can be solved in the polynomial time.  相似文献   

7.
Given an undirected graph with edge costs and both revenues and weights on the vertices, the traveling salesman subtour problem is to find a subtour that includes a depot vertex, satisfies a knapsack constraint on the vertex weights, and that minimizes edge costs minus vertex revenues along the subtour.We propose a decomposition scheme for this problem. It is inspired by the classic side-constrained 1-tree formulation of the traveling salesman problem, and uses stabilized column generation for the solution of the linear programming relaxation. Further, this decomposition procedure is combined with the addition of variable upper bound (VUB) constraints, which improves the linear programming bound. Furthermore, we present a heuristic procedure for finding feasible subtours from solutions to the column generation problems. An extensive experimental analysis of the behavior of the computational scheme is presented.  相似文献   

8.
This paper studies online scheduling problems with reassignment on two identical machines. We can reassign some jobs under certain rules after all the jobs have been assigned. Three different versions are studied and optimal algorithms are proposed.  相似文献   

9.
Kazuo Murota 《Combinatorica》1996,16(4):591-596
Two further equivalent axioms are given for valuations of a matroid. Let M = (V,B) be a matroid on a finite setV with the family of basesB. For :BR the following three conditions are equivalent: A similar result is obtained for valuations of a delta-matroid.This work was done while the author was at Forschungsinstitut für Diskrete Mathematik, Universität Bonn.  相似文献   

10.
A graph (digraph) G=(V,E) with a set TV of terminals is called inner Eulerian if each nonterminal node v has even degree (resp. the numbers of edges entering and leaving v are equal). Cherkassky and Lovász, independently, showed that the maximum number of pairwise edge-disjoint T-paths in an inner Eulerian graph G is equal to , where λ(s) is the minimum number of edges whose removal disconnects s and T-{s}. A similar relation for inner Eulerian digraphs was established by Lomonosov. Considering undirected and directed networks with “inner Eulerian” edge capacities, Ibaraki, Karzanov, and Nagamochi showed that the problem of finding a maximum integer multiflow (where partial flows connect arbitrary pairs of distinct terminals) is reduced to O(logT) maximum flow computations and to a number of flow decompositions.In this paper we extend the above max-min relation to inner Eulerian bidirected graphs and inner Eulerian skew-symmetric graphs and develop an algorithm of complexity for the corresponding capacitated cases. In particular, this improves the best known bound for digraphs. Our algorithm uses a fast procedure for decomposing a flow with O(1) sources and sinks in a digraph into the sum of one-source-one-sink flows.  相似文献   

11.
An analysis of the greedy algorithm for the submodular set covering problem   总被引:1,自引:0,他引:1  
We consider the problem: min \(\{ \mathop \Sigma \limits_{j \in s} f_j :z(S) = z(N),S \subseteqq N\} \) wherez is a nondecreasing submodular set function on a finite setN. Whenz is integer-valued andz(Ø)=0, it is shown that the value of a greedy heuristic solution never exceeds the optimal value by more than a factor \(H(\mathop {\max }\limits_j z(\{ j\} ))\) where \(H(d) = \sum\limits_{i = 1}^d {\frac{1}{i}} \) . This generalises earlier results of Dobson and others on the applications of the greedy algorithm to the integer covering problem: min {fy: Ayb, y ε {0, 1}} wherea ij ,b i } ≧ 0 are integer, and also includes the problem of finding a minimum weight basis in a matroid.  相似文献   

12.
We show that we can maintain up to polylogarithmic edge connectivity for a fully-dynamic graph in worst-case time per edge insertion or deletion. Within logarithmic factors, this matches the best time bound for 1-edge connectivity. Previously, no o(n) bound was known for edge connectivity above 3, and even for 3-edge connectivity, the best update time was O(n2/3), dating back to FOCS'92. Our algorithm maintains a concrete min-cut in terms of a pointer to a tree spanning one side of the cut plus ability to list the cut edges in O(log n) time per edge. By dealing with polylogarithmic edge connectivity, we immediately get a sampling based expected factor (1+o(1)) approximation to general edge connectivity in time per edge insertion or deletion. This algorithm also maintains a pointer to one side of a near-minimal cut, but if we want to list the cut edges in O(log n) time per edge, the update time increases to . * A preliminary version of this work was presented at the The 33rd ACM Symposium on Theory of Computing( STOC) [22], Crete, Greece, July 2001.  相似文献   

13.
Satoru Iwata 《Combinatorica》1996,16(3):449-449
A recent paper of mine [1] contains an error, which is not critical to the main result but still may confuse the readers. I would like to apologize this sincerely and show how to flix it.  相似文献   

14.
Satoru Iwata 《Combinatorica》1995,15(4):515-532
This paper discusses the principal structure of submodular systems due to S. Fujishige. It is shown that the principal structure is the coarsest decomposition that is finer than any decomposition induced by the principal partition with respect to a minimal nonnegative superbase. The concept of Hitchcock-type independent flow is introduced so that previously known results on the principal structures for bipartite matchings, layered mixed matrices and independent matchings can be understood as applications of the present result.  相似文献   

15.
We consider the network design problem which consists in determining at minimum cost a 2-edge connected network such that the shortest cycle (a “ring”) to which each edge belongs, does not exceed a given length K. We identify a class of inequalities, called cycle inequalities, valid for the problem and show that these inequalities together with the so-called cut inequalities yield an integer programming formulation of the problem in the space of the natural design variables. We then study the polytope associated with that problem and describe further classes of valid inequalities. We give necessary and sufficient conditions for these inequalities to be facet defining. We study the separation problem associated with these inequalities. In particular, we show that the cycle inequalities can be separated in polynomial time when K≤4. We develop a Branch-and-Cut algorithm based on these results and present extensive computational results.  相似文献   

16.
In this paper we consider boundary-value problems in domains with perforated boundaries. We use the classification of homogenized (limit) problems depending on the ratio of small parameters, which characterize the diameter of the holes and the distance between them. We study the analogue of the Helmholtz resonator for domains with a perforated boundary.  相似文献   

17.
18.
We consider a version of the total flow time single machine scheduling problem where uncertainty about processing times is taken into account. Namely an interval of equally possible processing times is considered for each job, and optimization is carried out according to a robustness criterion. We propose the first mixed integer linear programming formulation for the resulting optimization problem and we explain how some known preprocessing rules can be translated into valid inequalities for this formulation. Computational results are finally presented. Work funded by the Swiss National Science Foundation through project 200020-109854/1.  相似文献   

19.
We present the first polynomial-time approximation algorithm for finding a minimum-cost subgraph having at least a specified number of edges in each cut. This class of problems includes, among others, the generalized Steiner network problem, also called the survivable network design problem. Ifk is the maximum cut requirement of the problem, our solution comes within a factor of 2k of optimal. Our algorithm is primal-dual and shows the importance of this technique in designing approximation algorithms.Research supported by an NSF Graduate Fellowship, DARPA contracts N00014-91-J-1698 and N00014-92-J-1799, and AT&T Bell Laboratories.Research supported in part by Air Force contract F49620-92-J-0125 and DARPA contract N00014-92-J-1799.Part of this work was done while the author was visiting AT&T Bell Laboratories and Bellcore.  相似文献   

20.
We present variants of an ant colony optimization (MO-ACO) algorithm and of an evolutionary algorithm (SPEA2) for tackling multi-objective combinatorial optimization problems, hybridized with an iterative improvement algorithm and the robust tabu search algorithm. The performance of the resulting hybrid stochastic local search (SLS) algorithms is experimentally investigated for the bi-objective quadratic assignment problem (bQAP) and compared against repeated applications of the underlying local search algorithms for several scalarizations. The experiments consider structured and unstructured bQAP instances with various degrees of correlation between the flow matrices. We do a systematic experimental analysis of the algorithms using outperformance relations and the attainment functions methodology to asses differences in the performance of the algorithms. The experimental results show the usefulness of the hybrid algorithms if the available computation time is not too limited and identify SPEA2 hybridized with very short tabu search runs as the most promising variant. This research was mainly done while Luís Paquete and Thomas Stützle were with the Intellectics Group at the Computer Science Department of Darmstadt University of Technology, Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号