首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this research, the effect of gamma irradiation on the inactivation of Escherichia coli O157:H7 (ATCC 33150), Staphylococcus aureus (ATCC 2392) and Salmonella typhimurium (NRRL 4463) inoculated into Tekirdag meatballs was investigated. The meatball samples were inoculated with pathogens and irradiated at the absorbed doses of 1, 2.2, 3.2, 4.5 and 5.2 kGy. E. coli O157:H7 count in 1 kGy irradiated meatballs stored in the refrigerator for 7 days was detected to be 4 log cfu/g lower than the count in nonirradiated samples (p<0.05). S. aureus counts were decreased to 4 log cfu/g after being exposed to irradiation at a dose of 1 kGy. Although it was ineffective on elimination of S. typhimurium, irradiation at a dose of 3.2 kGy reduced E. coli O157:H7 and S. aureus counts under detectable values in the meatballs. However, none of the test organisms were detected in the samples after irradiation with 4.5 kGy doses.  相似文献   

2.
In the present study, initial microbial load of instant cup noodle (ICN) was investigated and gamma irradiation applied to develop immuno-compromised patients food for their safe consumption. The initial microbial population of dried vegetable and meat, and noodle was below the detection limit (1 log CFU/g); however, that of seasoning powder was just above 4 log CFU/g. Moreover, rehydrated-ICN with water at 100 °C still show above 3 log CFU/g of microbial load, which indicates the need for an additional process to control microbial safety of the seasoning powder. The total aerobic bacteria in seasoning powder and rehydrated-ICN could be controlled with 17 kGy gamma irradiation. This result referred 17 kGy gamma irradiation could reach ‘practical sterility’ of ICN. The overall difference in sensory properties between the non-irradiated and irradiated ICN was insignificant. Thus, gamma irradiation could improve the microbial quality of ICN, and reduce the risk of infection posed by the seasoning powder, without any adverse effects on their sensory quality. These results suggest that gamma-irradiated ICN can be used as a snack food for immuno-compromised patients.  相似文献   

3.
Application of gamma radiation for decontamination of poultry viscera was examined. Exposure to a dose of 20 kGy rendered the viscera sterile (<1 CFU/10 g tissue), while 5 and 10 kGy reduced the total bacterial count by 4 and 6 log10 cycles, respectively, eliminating the coliforms to <1 CFU/g of tissue. Analysis of organoleptic and biochemical parameters [proximate composition, total volatile basic nitrogen (TVBN), lipid peroxidation (TBARS value), and levels of TCA soluble peptides and proteolytic enzyme] showed that gamma irradiation (20 kGy) followed by storage at 4 °C for 62 days induced no significant change (except lipid peroxidation) in the acceptability of poultry viscera. However, storage at ambient temperature (26 °C) produced enhanced levels of TVBN and TCA soluble products accompanied by higher drip loss. Activities of proteolytic enzymes, except acid protease, did not show any significant change during post-irradiation storage at either temperature.  相似文献   

4.
A variety of ready-to-cook meat products available in Indian supermarkets (mutton mince, chicken mince, chicken chunks, and chicken legs) were studied. The samples were irradiated (2.5 kGy), or left untreated as control, and stored at 0–3 °C for up to 21 days. The effect of irradiation on the microbiological, chemical, and sensory properties was evaluated at intervals during the storage period. Irradiated samples had a longer shelf-life at 0–3 °C compared with the corresponding non-irradiated samples. Fecal coliforms were eliminated by irradiation treatment. Radiation processed samples had lower counts of Staphylococcus spp. There were no significant organoleptic changes in irradiated samples stored at chilled temperatures.  相似文献   

5.
Lycium fruit, popular traditional Chinese medicine and food supplement generally is ingested uncooked, was exposed to several doses of gamma irradiation (0–14 kGy) to evaluate decontamination efficiency, changes in chemical composition, and changes in sensory characteristic. In this study, lycium fruit specimens contained microbial counts of 3.1×103–1.7×105 CFU/g and 14 kGy was sufficient for microbial decontamination. Before irradiation, the main microbe isolated from lycium fruit was identified as a strain of yeast, Cryptococcus laurentii. After 10 kGy of irradiation, a Gram-positive spore-forming bacterium, Bacillus cereus, was the only survivor. The first 90% reduction (LD90) of C. laurentii and B. cereus was approximately 0.6 and 6.5 kGy, respectively, the D10 doses of C. laurentii and B. cereus was approximately 0.6 and 1.7 kGy, respectively. After 14 kGy irradiation, except the vitamin C content, other chemical composition (e.g., crude protein, β-carotene, riboflavin, fructose, etc.) and the sensory characteristic of lycium fruit specimens did not have significant changes. In conclusion, 14 kGy is the optimal decontamination dose for lycium fruit for retention of its sensory quality and extension of shelf life.  相似文献   

6.
In this study, ionizing radiation in combination with sodium hypochlorite (NaOCl) and ultrasonication (US) was examined for its effectiveness in reducing Bacillus cereus F4810/72 spores in raw rice. We also evaluated whether the combined processing would produce synergistic effects compared to the individual treatments. The concentration of the initial B. cereus spore was approximately 2.9 log10 CFU/g. After 0.1, 0.2 and 0.3 kGy irradiation treatment, spore populations were reduced by 1.3, 1.4 and 1.6 log10 CFU/g, respectively. In the case of combined gamma irradiation and NaOCl/US treatment, the reduction was higher than those of each single treatment. The combined treatment of 0.1, 0.2 and 0.3 kGy and NaOCl (600–1000 ppm)/US (5–20 min) completely destroyed the spores in raw rice while the spores were not completely destroyed in the control treatment (0 kGy). These results indicated that it could be more effective to combine NaOCl with low dose gamma irradiation than high dose (concentration) of individual disinfection treatment to destroy B. cereus spores in food such as raw rice.  相似文献   

7.
Hydrated feed (HF) promotes the growth performance and shortens the feeding time of fish by increasing the efficiency of digestion. However, the shelf-life of HF is a concern due to its relatively higher water content. In this study, radiation pasteurization was applied to improve the shelf-life and microbiological quality of HF for fish farming. Preservative-free HF containing 25% moisture was gamma-irradiated and its microbiological and nutritional properties evaluated in addition to a practical feeding trial carried out using eel. The viable counts of bacteria and fungi in HF were 106 and 104 CFU/g, respectively. All coliform bacteria and yeast in HF were eliminated by irradiation at a dose of 5 kGy, and total aerobic bacteria were eliminated at 10 kGy. The shelf-life of the preservative-free and irradiated (10 kGy) HF was estimated as 6 months under ambient conditions. The nutritional composition of HF was stable up to 10 kGy of irradiation. Based on a feeding trial, it was proven that eel fed HF had about 20% higher growth rate than that fed dried feed.  相似文献   

8.
The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.  相似文献   

9.
We investigated the potential of ionizing radiation for improving physiological responses, quality, and storage time of fresh guava fruit. Ionizing radiation treatment suppressed the respiration and ethylene production rates and thus retarded the process of fruit ripening during storage. Irradiation treatment also retarded the physical and biochemical changes associated with ripening such as firmness, titratable acidity, soluble solids content, and vitamin C during storage, but for doses higher than 0.25 kGy the vitamin C content decreased. The positive effects of ionizing radiation treatment on delayed fruit ripening and other quality attributes diminished during 22 days of storage at 10 °C. Thus, a combination of ionizing radiation with low-temperature storage (10 °C) did not have much synergistic effect on storage life and quality of guava fruit. In conclusion, ionizing radiation treatment of guava fruit with 0.25 kGy dose increased the postharvest life by 3–4 days, maintained fruit quality, and reduced the decay incidence. The optimal dose (0.25 kGy) for postharvest life extension of guava fruit may be exploited to provide phytosanitary security against many insect pests including fruit flies.  相似文献   

10.
The effect of gamma irradiation on the content of total phenolic compounds, especially quercetin (Q), in onion (Allium cepa L.) skin was investigated. Onion skin extracts contained two predominant flavonoid compounds, Q and quercetin-4′-glucoside (Q4′G). After 10 kGy gamma irradiation, the yield of Q in the extracts increased significantly from 36.8 to 153.9 μg/ml of the extract, and the Q4′G content decreased slightly from 165.0 to 134.1 μg/ml. In addition, the total phenolic compound content also increased after irradiation at 10 kGy, from 228.0 μg/g of fresh weight to 346.6 μg/g; negligible changes (237.1–256.7 μg/g) occurred at doses of up to 5 kGy. As we expected, radical-scavenging activity was enhanced remarkably (by 88.8%) in the 10 kGy irradiated sample. A dose-dependent increase in the peak intensity of the electron paramagnetic resonance (EPR) spectra was observed in all irradiated samples, with a maximum increase at 10 kGy. The intensity relative to that of the control was 0.15, and it increased to 1.10 in 10 kGy irradiated samples. The optimum gamma irradiation dose, which is sufficient to break the chemical or physical bonds and release soluble phenols of low molecular weight in onion skin, is about 10 kGy.  相似文献   

11.
The purpose of this study was to evaluate microbial populations, Hunter's color values (L?, a?, b?) and the sensory quality of freeze-dried miyeokguk, Korean seaweed soup, in order to use it as space food. Microorganisms were not detected in non-irradiated freeze-dried miyeokguk within the detection limit of 1.00 log CFU/g. However, the microbial population in rehydrated miyeokguk was 7.01 log CFU/g after incubation at 35 °C for 48 h, indicating that freeze-dried miyeokguk was not sterilized by heat treatment during the preparation process. Bacteria in the freeze-dried miyeokguk were tentatively identified as Bacillus cereus, B. subtilis, Enterobacter hormaechei, and Ancinetobacter genomosp. using the 16S rDNA sequencing. In samples that were gamma-irradiated above 10 kGy, it was confirmed that all microorganisms were inactivated. Hunter's color values of the samples irradiated at doses less than 10 kGy were not significantly altered from their baseline appearance (p>0.05). Sensory evaluation showed that preference scores in all sensory properties decreased when freeze-dried miyeokguk was irradiated at doses greater than 10 kGy. Therefore, the results of this study suggest that gamma irradiation at 10 kGy is sufficient to sterilize freeze-dried miyeokguk without significant deterioration in the sensory quality, and thus, the freeze-dried and irradiated miyeokguk at 10 kGy fulfills the microbiological requirements as space food.  相似文献   

12.
In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0–40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities.  相似文献   

13.
The effect of gamma-irradiation on keeping quality of peach fruit was studied. The fruit, after harvesting at proper maturity stage, was irradiated in the dose range of 1.0–2.0 kGy, stored under ambient (temp. 25±2 °C, RH 70%) and refrigerated (temp. 3±1 °C, RH 80%) conditions and evaluated periodically for firmness, total soluble solids (TSS), anthocyanins, water-soluble pectic fractions, loss in weight and decay percentage. The anthocyanin evaluation of the fruits revealed that irradiation enhanced the colour development under both the storage conditions. The gamma-irradiation dose range of 1.2–1.4 kGy proved effective in maintaining higher TSS concentration, reducing weight loss and significantly (p⩽0.05) delaying the decaying of the fruit by 6 days under ambient conditions and by 20 days under refrigerated storage conditions.  相似文献   

14.
Food packaging polymers, polystyrene (PS), polycarbonate (PC), polyamide-6 (PA-6), and polyvinylchloride (PVC), were irradiated with dose in the range 5–200 kGy. The quantities of corresponding monomer residues (styrene monomer, bisphenol-A, ε-caprolactam, vinyl chloride) released from target materials were analyzed using a SIM mode of GC/MSD. Styrene monomer in PS showed a slight increase from 740 to 777 ppm at 5–30 kGy and then decreased as the dose increased from 30 to 200 kGy. Bisphenol-A in PC was dose independent at the low doses, 5, 10 and 30 kGy, but its level increased from 173 to 473 ppm at 30 kGy and thereafter remained unchanged through 200 kGy. ε-Caprolactam in PA-6 was also dose independent, in the range of 5–200 kGy, but its level (122–164 ppm) was found to be higher than those (71 ppm) of non-irradiated sample. As for PVC, the quantity of vinyl chloride tended to increase from 8 to 18 ppm at 5–200 kGy.  相似文献   

15.
In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106–107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105–106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.  相似文献   

16.
High-dose (higher than 30 kGy) irradiation has been used to sterilize specific-purposed foods for safe and long-term storage. The objective of this study was to investigate the effect of high-dose irradiation on the quality characteristics of ready-to-eat chicken breast in comparison with those of the low-dose irradiation. Ready-to-eat chicken breast was manufactured, vacuum-packaged, and irradiated at 0, 5, and 40 kGy. The populations of total aerobic bacteria were 4.75 and 2.26 Log CFU/g in the samples irradiated at 0 and 5 kGy, respectively. However, no viable cells were detected in the samples irradiated at 40 kGy. On day 10, bacteria were not detected in the samples irradiated at 40 kGy but the number of bacteria in the samples irradiated at 5 kGy was increased. The pH at day 0 was higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. The 2-thiobarbituric acid reactive substance (TBARS) values of the samples were not significantly different on day 0. However, on day 10, the TBARS value was significantly higher in the samples irradiated at 40 kGy than those at 0 and 5 kGy. There was no difference in the sensory scores of the samples, except for off-flavor, which was stronger in samples irradiated at 5 and 40 kGy than control. However, no difference in off-flavor between the irradiated ones was observed. After 10 days of storage, only the samples irradiated at 40 kGy showed higher off-flavor score. SPME-GC–MS analysis revealed that 5 kGy of irradiation produced 2-methylbutanal and 3-methylbutanal, which were not present in the control, whereas 40 kGy of irradiation produced hexane, heptane, pentanal, dimethly disulfide, heptanal, and nonanal, which were not detected in the control or the samples irradiated at 5 kGy. However, the amount of compounds such as allyl sulfide and diallyl disulfide decreased significantly in the samples irradiated at 5 kGy and 40 kGy.  相似文献   

17.
The objective of this study was to evaluate the effect of a concentrated fermented dextrose (FD), a natural antimicrobial product, combined with low dose γ-irradiation (1.5 kGy) on the microbiological quality of fresh pork sausages. Fresh pork sausages containing the FD (0.25%, 0.5% and 0.75%) were prepared in a meat pilot plant and were irradiated using a UC-15A irradiator equipped with a 60Cobalt source. The γ-irradiation treatment alone was able to reduce the initial psychrophilic and mesophilic bacteria by more than 2 log CFU/g and kept the lactobacillus population under the detection limit (100 CFU/g). Results also showed that the FD alone was able to extend the shelf life of the sausages from 5 days up to 13 days. At day 13, the FD or irradiation alone showed 2 log CFU/g less mesophilic bacteria than the control. After combining FD and irradiation another reduction of the microbial count of 1 log CFU/g was observed. When combining the irradiation treatment with the FD results it showed a reduced growth rate of the psychrophilic and mesophilic bacteria compared to both treatments alone. This study demonstrated that FD with low dose gamma irradiation act in synergy to reduce the multiplication of the total bacterial flora in fresh sausages.  相似文献   

18.
The decomposition of volatile organic compounds (VOCs) using a pilot system of electron beam (EB)–catalyst coupling was investigated. Two aromatic VOCs, toluene (1800 ppmC) and o-xylene (1500 ppmC), were irradiated with a dose range of 0–10 kGy at room temperature. The removal efficiencies for toluene and o-xylene were 92.4% and 94.5%, respectively, under a 10 kGy absorbed dose condition, which were higher than the results of 45.7% and 52.3% when EB-only was used, respectively. The CO2 selectivity approached 100% for both toluene and o-xylene using the EB-catalyst coupling system, while the concentrations of O3 formed were 0.02 ppm (toluene) and 0.003 ppm (o-xylene) at 10 kGy. The aerosol concentration was also measured as 43.2 μg/m3 (toluene) and 53.4 μg/m3 (o-xylene) at 10 kGy absorbed dose.  相似文献   

19.
The effects of a potential quarantine treatment consisting of exposure to X-ray irradiation against the Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) on ‘Clemenules’ mandarin quality are presented and compared with those from the standard cold temperature quarantine treatment. X-ray irradiation doses of 0.195 and 0.395 kGy had no detrimental effects on fruit quality (rind color, firmness, juice yield, maturity index, internal volatiles, deterioration index and sensory evaluation). These results therefore indicate that X-ray irradiation is a harmless and highly effective quarantine technique for clementine mandarin and this technique could be as useful as the current cold treatment for ‘Clemenules’ mandarins.  相似文献   

20.
Bibimbap, Korean traditional cooked rice mixed with various kinds of vegetables, together with mushrooms and a ground meat, and seasoned with red pepper paste, was developed as a ready-to-cook food by combined treatment with irradiation for the use in space. By gamma irradiation of 25 kGy, the total aerobic bacteria of Bibimbap that was initial by 6.3 log CFU/g decreased to below detection limit, but its sensory qualities were drastically decreased. To enhance the sensory quality, the effects of antioxidant in Bibimbap were evaluated. A treatment with 0.1% of vitamin C, vacuum packaging and gamma-irradiated at 25 kGy and ?70 °C showed higher sensory scores than only the irradiation process. This result indicates that the radiation technology may be useful to produce a variety of space foods with high quality of taste and flavor, when combined with other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号