首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this research, polystyrene (PSt) nanocapsules with liquid cores were prepared by 60Co γ-ray radiation induced miniemulsion polymerization, in which N-vinyl pyrrolidone (NVP) was used as the polar monomer. The characterization of polymer was carried out by 1H NMR. It was verified that during polymerization, graft copolymerization between poly (pyrrolidone) (PVP) and PSt had taken place instead of random copolymerization. The interfacial tension between polymer and water was reduced because of the grafting reaction that had occurred, which was helpful to form nanocapsules. The influence of the ratio of St to NVP, the type and amount of the surfactant and the monomer/dodocane ratio on the particle morphology was studied by TEM. Finally, the releasing process of the synthesized nanoparticles was monitored by UV-vis measurement.  相似文献   

3.
Photo-active moiety, benzophenone, was incorporated onto cotton fabrics by using butyl tetracarboxylic acids (BTCA). Then, grafting of polyacrylamide on the cotton fabrics was performed by exposing the fabrics to longer UV wavelength irradiation. The chemical structure and thermal properties of the polyacrylamide grafted cotton fabrics were investigated by SEM, FTIR, XRD, and TGA, and the results verified the successful grafting of polyacrylamide on cotton fabrics. Also, it was observed that active chlorine contents were created on the polyacrylamide grafted cotton fabrics through simple chlorination process, and the chlorine treated cotton fabrics showed excellent antibacterial abilities like the powerful cyclic amide halamines.  相似文献   

4.
A new method of immobilization of yeast cells for the advantageous growth of cells inside and on the surface of a polymer carrier by physical adsorption is proposed. Porous and swellable polymer carriers were prepared by radiation-induced polymerization at low temperature. These polymer carriers were incubated with yeast cells at 30°C under aerobic conditions. Yeast cells were adsorbed on the surface of polymer carriers and subsequently infiltrated the polymer carriers by multiplication. The ethanol productivity of immobilized growing yeast cells thus obtained was thirteen times that of free yeast cells in a 1:1 volume of liquid medium to immobilized yeast cells.  相似文献   

5.
This paper reports the research results which the anticancer drugs Ara-C with controlled slow release were made by radiation induced polymerization of monomers such as methacrylates at room temperature. Our studies showed that not only hydrophilic synthetic polymers but also hydrophobic polymers such as hydrophobic methacrylates (including MMA, EMA, and BMA) could be used to the immobilization. In vitro the rate of drugs release was controlled by the many factors such as the content of drugs, the monomer material, the crosslinking agent, the irradiation dose and the water content, etc.  相似文献   

6.
The diffusion-free radiation graft polymerization of styrene onto polyethylene has been studied. The grafting rate shows a dependence on monomer which is far different than what has been assumed. Further, the dependence on monomer changes with increasing dose rate as does the dependence of grafting rate on radiation dose rate. Three different regions of behavior are defined: (1) a region of low dose rate where the grafting rate is 1/2-order in dose rate and 3/2-order in monomer; (2) a region of intermediate dose rate where the grafting rate is intermediate between 1/2-and zero-order in dose rate and 5/2-order in monomer; and (3) a region of high dose rate, where the grafting rate is independent of dose rate and at least 5/2-order in monomer. Various possible mechanisms responsible for these effects are discussed, including the effects of viscosity on the initiation and termination reactions, the possibility of ionic graft polymerization, and energy transfer.  相似文献   

7.
A new method for biomolecular patterning based on ion irradiation‐induced graft polymerization was demonstrated in this study. Ion irradiation on a polymer surface resulted in the formation of active species, which was further used for surface‐initiated graft polymerization of acrylic acid. The results of the grafting study revealed that the surface graft polymerization using 20 vol % of acrylic acid on the poly(tetrafluoroethylene) (PTFE) film irradiated at the fluence of 1 × 1015 ions/cm2 for 12 h was the optimum graft polymerization condition to achieve the maximum grafting degree. The results of the fluorescence microscopy also revealed that the optimum fluence to achieve the maximum fluorescence intensity was 1 × 1015 ions/cm2. The grafting of acrylic acid on the PTFE surfaces was confirmed by a fluorescence labeling method. The grafted PTFE films were used for the immobilization of amine‐functionalized p‐DNA, followed by hybridization with fluorescently tagged c‐DNA. Biotin‐amine was also immobilized on the acrylic acid grafted PTFE surfaces. Successful biotin‐specific binding of streptavidin further confirmed the potential of this strategy for patterning of various biomolecules. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6124–6134, 2009  相似文献   

8.
A novel magnetic chelator with high adsorption capacity of protein by immobilized metal affinity adsorption was prepared by cerium (IV) initiated graft polymerization of tentacle-type polymer chains with iminodiacetic acid (IDA) chelating group on magnetic particles with hydroxyl groups. The micron-sized magnetic poly(vinyl acetate-divinylbenzene) (PVAc-DVB) particles were prepared by a modified suspension polymerization in the presence of oleic acid-coated magnetite nanoparticles and subsequently modified by ester exchange reaction to introduce functional hydroxyl groups. Bovine hemoglobin (BHb) was selected as a model protein to investigate the adsorption capacity of these magnetic particles. The magnetic particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray diffraction (XRD). The results showed that the magnetic particles had an average size of 5 microm and superparamagnetism with saturation magnetization of 20.0 emu/g at room temperature. The protein adsorption indicated that the graft polymerization of tentacle type polymer chains on the magnetic particles could produce magnetic adsorbents with high adsorption capacity (1428.21 mg/g) and low nonspecific adsorption of protein. The magnetic particles with grafted tentacle polymer chains have potential application in large-scale affinity separation of proteins.  相似文献   

9.
In order to study the dielectric behavior of polyoxymethylene prepared by radiation-induced solid-state polymerization, large crystals of tetraoxymethylene (2 cm in diameter) were prepared by Bridgman's method and polymerized by γ-rays. The x-ray diffraction pattern of the polymer did not reveal the existence of a so-called amorphous region. In dielectric measurements, only one dielectric absorption was observed in the low-temperature region, while in the high-temperature region ε″ did not change up to about 120°C, where thermal decomposition started. When the specimen was stabilized by acetylating the endgroups in the solid state, ε″ did not change up to about 150°C. This dielectric absorption showed a significant anisotropy for the direction of an applied field. The dielectric absorption was much larger when the electric field was perpendicular to the fiber axis than when the field was parallel. The dielectric absorption was larger in a specimen which was estimated to be more imperfect according to DSC analysis. This leads to the conclusion that the dielectric absorption is attributable to defect regions. On the other hand, the dielectric absorption became larger with increasing numbers of terminal OH groups, and hence it is attributable to the response of the terminal OH groups. Moreover, the dielectric absorption was depressed by the acetylation of the OH groups in the solid state. It is, therefore, concluded that the dielectric absorption observed in polyoxymethylene prepared by solid-state polymerization of tetraoxymethylene is due to the response of terminal OH groups localized in defect regions. Polyoxymethylene crystallized from the melt gives an asymmetric low-temperature absorption. This asymmetry can be ascribed to the superposition of two relaxation processes. When its absorption curve is compared with that of the solid-state polymerized polymer, the low-temperature component can be assigned to crystal defects and the high temperature one to amorphous regions.  相似文献   

10.
A fluoride acrylate monomer, 1H,1H,2H,2H-nonafluorohexyl-1-acrylate (denoted as F4), was grafted onto cotton fabric through a simultaneous irradiation induced graft polymerization technique. The grafted cotton fabric (denoted as cotton–F4) is superhydrophobic (SCF) when the degree of grafting (DG) exceeded 10%. The morphology of the cotton fabric was unchanged. In addition, the mechanical properties of the cotton fabric and SCF samples were also studied. The results showed that the decrease in mechanical properties was less than 20%, indicating that the SCF retained good mechanical strength.  相似文献   

11.
Using a plasma-induced graft polymerization technique, which is well known as a surface modification method, the grafted polymer was formed in pores of the porous material. This study examined the filling mechanism. Five thin porous films were sandwiched together, and employed as the substrate. The substrate was treated by plasma, and the change in surface tension and radical formation was measured for each sheet after the sheet was separated. The only surface on which surface-tension change was detected, was that of the sheet directly exposed to the plasma. Although plasma treatment made polymer radicals primarily on the outer surface of the sheet, the treatment also formed a few radicals inside the sheets. The radicals inside the sheets reacted with methylacrylate and grafted polymer formed in the pores. The location of grafted polymer depended on the balance between monomer diffusivity and reactivity. The grafting rate depended on which monomer solvent was used for the polymerization. Thus, the grafted membrane morphology could be controlled by varying the grating solvent composition. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Acrylonitrile has been widely used in the modification of polymers by graft polymerization. In the present work, pre-irradiation induced emulsion graft polymerization method is used to introduce acrylonitrile onto PE nonwoven fabric instead of the traditional reaction in organic solvents system. The degree of grafting (DG) is measured by gravimetric method and the kinetics of the graft polymerization is studied. The existence of the graft chains is proven by Fourier transform infrared spectroscopy (FT-IR) analysis. Thermal stability of the grafted polymer is measured by Thermogravimetric analysis (TGA).  相似文献   

13.
Vinyl acetate polymerization by ionizing radiation   总被引:2,自引:0,他引:2  
For this work an irradiation system to be used in the polymerization of the vinyl acetate in methylethylketone and in ethyl alcohol solution using the gamma radiation as initiator was projected and built. The molecular weights of the polymers obtained by irradiation with gamma rays in methylethylketone and in ethyl alcohol solution were 33,000 and 44,000 g/mol, respectively. From the characterization by infrared spectroscopy it was possible to verify that the polymers obtained in two studied cases actually correspond to poly(vinyl acetate).  相似文献   

14.
The characterization of a resin material is presented, which contains selective complexing and scintillating molecules in chemically bound form. The resin material is produced via radiation polymerization of the solution of 2-(4-allyloxy-phenyl)-5-phenyl oxazole, 5-(allyloxy-phenyl)-2-[4-(5-phenyl-oxazole-2-il)-phenyl] oxazole, diethylene glycol dimethacrylate (DEGMA), styrene and the allyl derivative of a 18C6 crown ether-dicarbolic acid complexing agent. The product is a macroporous polymer matrix, which shows both excellent scintillation properties and ion binding capacity for radioanalytical purposes.  相似文献   

15.
To improve the wettability and adhesion, graft polymerization of acrylamide (AAm) and glycidyl methacrylate (GMA) was performed onto the surface of ultra-high modulus polyethylene (UHMPE) fiber pretreated with Ar plasma. Following the plasma treatment and the subsequent exposure to air to introduce peroxides onto the fiber surface, graft polymerization onto the UHMPE fiber was allowed to proceed from the polymer peroxides either in deaerated monomer solution at an elevated temperature (degassing method), or in aerated monomer solution containing riboflavin at 30°C under UV irradiation (photoinduction method). The monomer solution was prepared from water and dioxane for AAm and GMA, respectively. After rigorous removal of homopolymers, surface analysis of the grafted fibers was performed with ATR-FTIR and XPS, which revealed that PAAm and PGMA chains were grafted in the surface region of fibers. The grafting rate of PAAm by the photoinduction method was much higher than that by the degassing method when compared at the same concentration of the AAm solution. The amount of PGMA grafted was greatly affected by UV irradiation time, but depended on plasma treatment time to an insignificant extent if the treatment was carried out for longer than 30 s. Reaction of propylamine with the PGMA-grafted surface resulted in the appearance of a nitrogen peak in the XPS spectrum, suggesting the presence of epoxy groups on the surface of PGMA grafted fiber. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Two methods for modification of polymer surfaces by photoinitiated grafting have been developed and applied to films and fibers of synthetic polymers, e.g. polyethylene and polypropylene with acrylic monomers. In the batch process the substrate is enclosed in a cell containing initiator and monomer vapor. UV light through a quartz window initiates the grafting reaction by exciting the initiator (e.g. benzophenone). The grafting reaction is slow (1 to 3 min) due to the inefficient transfer of initiator and monomer through vapor phase. In the continuous process the substrate is presoaked in a solution of initiator and monomer and then drawn into a reactor “on line” where the substrate is irradiated by UV light through a quartz window. The grafting takes place in the very thin surface layer of solution on the substrate. The grafting efficiency is high (70–80% of the polymer formed is grafted) and the process is rapid (5–15 s due to the efficient transfer of initiator and monomer through the liquid phase. The continuous surface grafting process is promising for industrial applications.  相似文献   

17.
A novel approach was developed to overcome the non-uniform distribution of grafted polystyrene (PS) chains across proton exchange membranes (PEMs) manufactured using radiation induced graft polymerization of commercialized fluoropolymer films. This process involves the three key steps of grafting of styrene into fluoropolymer powder, processing the grafted powder into membranes, and then obtaining the PEM by sulfonation of these membranes. The structure of the membranes and the PEMs were analyzed by means of infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope with energy-dispersive X-ray analysis (SEM-EDX) to demonstrate the uniform distribution of poly(styrene-sulfonic acid) (denoted as PSSA) graft-chains across the PEM. The properties of the resulting PEMs, such as their ion exchange capacity (IEC), water uptake (WU), proton conductivity, dimensional stability, oxidative stability and thermal stability, were also investigated.  相似文献   

18.
A graft-polymerization process with atomized lauryl methacrylate as monomer is used to fabricate fluorine-less and asymmetrically superhydrophobic cotton fabrics. The polymers synthesized in the process can form nanoscale hierarchical structures on the cotton surface, and the surface morphology can be controlled by choosing a suitable solvent or by varying the feeding quantity of the monomer mist stream. After applying the surface modification to cotton fabrics, an asymmetrically superhydrophobic surface is achieved without any additional nanosized particles, and the solvent damages on the cotton fabrics are controllable at a very low level. Surface characterization reveals that the modified side of the cotton fabric has laundering-durable and mechanically stable superhydrophobicity with a water contact angle of more than 150°, whereas the opposite inherits the hydrophilic property of pristine cotton fabric. The modified cotton fabrics are found to have medium-level water-absorbing ability between pristine cotton and PET fabrics, as well as good vapor transmissibility similar to pristine cotton fabric. These properties are of great significance in textile and medical applications.  相似文献   

19.
This paper, by no means exhaustive, focuses on high-energy ball-milling of oxides, on their mechanically induced changes and on the consequences of such changes on their physical and chemical properties. High-energy ball-milling offers a fortunate combination of technical simplicity and of complexity both of physical mechanisms which act during milling and of mechanosynthesized materials. Its basic interest, which stems from the large diversity of routes it offers to prepare oxides either directly or indirectly, is illustrated with various families of oxides. The direct path is to be favoured when as-milled oxides are of interest per se because of their nanocrystalline characteristics, their defects or their modified structures which result from mechanically driven phase transformations. The indirect path consists of a sequence of steps starting with mechanically activated oxides which may be subsequently just annealed or submitted to a combination of thermal treatments, with the possible occurrence of various chemical reactions, to prepare the sought-after materials with potential gains in processing temperatures and times. High energy ball-milling of oxides is more and more currently used to activate powders and to prepare nano-oxides at moderate temperatures. The interest of an activation step is well illustrated by the broad development of doped titania powders, synthesized by heat treatment of pre-ground reactants, for photocatalytic applications or to develop antibacterial materials. Another important class of applications of high-energy ball-milling is the formation of composites. It is exemplified here with the case of oxide-dispersed strengthened alloys whose properties are considerably improved by a dispersion of ultra-stable nanosized oxides whose formation mechanisms were recently described. The basic understanding of the mechanisms by which oxides or oxide mixtures evolve by high-energy ball-milling appears to be less advanced than it is for metallic materials essentially because of the overall complexity of the oxide structures, of their surfaces, of their defects and of their mechanical behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号