首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel experimental technique for measuring crack tipT-stress, and hence in-plane crack tip constraint, in elastic materials has been developed. The method exploits optimal positioning of stacked strain gage rosette near a mode I crack tip such that the influence of dominant singular strains is negated in order to determineT-stress accurately. The method is demonstrated for quasi-static and low-velocity impact loading conditions and two values of crack length to plate width ratios (a/W). By coupling this new method with the Dally-Sanford single strain gage method for measuring the mode I stress intensity factorK I , the crack tip biaxiality parameter is also measured experimentally. Complementary small strain, static and dynamic finite element simulations are carried out under plane stress conditions. Time histories ofK I andT-stress are computed by regression analysis of the displacement and stress fields, respectively. The experimental results are in good agreement with those obtained from numerical simulations. Preliminary data for critical values ofK I and β for dynamic experiments involving epoxy specimens are reported. Dynamic crack initiation toughness shows an increasing trend as β becomes more negative at higher impact velocities.  相似文献   

2.
自适应分析在确定裂纹尖端塑性区中的应用   总被引:1,自引:0,他引:1  
在分析裂纹扩展及材料强度时对塑性区的估算是很重要的,本文提出采用自适应有限元分析来确定裂纹尖端塑性区的方法,计算结果表明这种方法通过网格自动加密能够有效地跟踪出弹塑性的交界面。  相似文献   

3.
Summary A method is presented to analyze elastodynamic stress intensity factors at the tip of a branch which emanates at velocity v and under an angle from the tip of a semi-infinite crack, when the faces of the semi-infinite crack are subjected to impulsive normal pressures. By taking advantage of self-similarity, the system of governing equations is reduced to a set of two Laplace's equations in half-plane regions. The solutions to these equations, which are coupled along the real axes of the half-planes, are obtained by using complex function theory together with summations over Chebychev polynomials. For small values of the Mode I and Mode II stress intensity factors and the corresponding flux of energy into the crack tip have been computed.  相似文献   

4.
In the present paper, Gurson's constitutive equation, which takes into account the development of voids, is used to study the behaviour of the material in the region near crack tip. Furthermore, the effect of void development on Young's modulus, which was not considered by Gurson, is taken into consideration. The analyses on void development, on stress distribution near crack tip, and on the variance of COD for the plane strain mode I problem are carried out with the large elastic-plastic deformation finite element method. The results are compared with those estimated from the Prandtl-Reuss constitutive equation.  相似文献   

5.
Contaminant transport with nonlinear sorption under nonequilibrium conditions is studied with the objective of finding exact formulae for solute concentrations. We introduce the concept of linear caricature isotherm and obtain the concentration profiles as travelling waves. The solution procedure does not make any simplifying assumptions such as the coupled effect of dispersion and nonequilibrium is negligible or local equilibrium is valid.Research supported by the U.S. Air Force under Grant No. F4962090C09076.  相似文献   

6.
S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 11, pp. 69–75, November, 1994.  相似文献   

7.
Summary  Transient dislocation emission from a crack tip under dynamic mode III loading is analyzed. By taking into account the dynamic interaction between the crack and dislocation, the governing equation for the dislocation motion is derived under the quasi-steady assumption. The behavior of dislocation emission is explored in detail by solving this equation numerically. A critical initial speed can be determined, which must be exceeded by dislocations to escape from the crack tip. The dislocation emission process is found to be completed in such a short time period that the applied load may be approximately treated as constant during dislocation emission. Based on this fact, an asymptotic criterion for transient dislocation emission is developed, from which the critical initial speed can be evaluated. In the case that the dislocation is emitted from rest, we recover the quasi-static criterion of dislocation emission. Received 22 November 2000; accepted for publication 20 March 2001  相似文献   

8.
A method is proposed to calculate the eigenvalues of the class of nonlinear eigenvalue problems resulting from the problem of determining the stress-strain state in the vicinity of a crack tip in power-law materials over the entire range of mixed modes of deformation, from the opening mode to pure shear. The proposed approach was used to found eigenvalues of the problem that differ from the well-known eigenvalue corresponding to the Hutchinson-Rice-Rosengren solution. The resulting asymptotic form of the stress field is a self-similar intermediate asymptotic solution of the problem of a crack in a damaged medium under mixed loading. Using the new asymptotic form of the stress field and introducing a self-similar variable, we obtained an asymptotic solution of the problem of a crack in a damaged medium and constructed the regions of dispersed material near the crack.  相似文献   

9.
This paper presents the results of a finite-element study of elastic-plastic deformation and damage accumulation in structural materials under various cyclic loading conditions. Material behavior is described by the relations of damage mechanics using thermoplastic model which takes into account the plastic deformation of material under cyclic loading and the kinetic equations of the energy theory of damage accumulation. The basic laws of plastic deformation and development of damage in materials under hard, soft, symmetric, and asymmetric low-cycle loading are established.  相似文献   

10.
The spatial stress state in a circular plastic zone near an elliptic crack under bi-and tri-axial asymmetric loading at infinity is studied. It is shown that the plastic constraint factor peaks at the points with maximum external tensile tangential stresses on the crack boundary. The use of a two-parameter failure criterion leads to the conclusion that the limit state can first be reached at the ends of the major axis of the elliptic crack depending on the relation between the external stresses __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 11, pp. 24–30, November 2007.  相似文献   

11.
On condition that any perfectly plastic stress component at a crack tip is nothingbut the function ofθ.by making use of equilibrium equations,anisotropic plastic stress-strain-rate relations,compatibility equations and Hill anisotropic plastic yieldcondition,in the present paper,we derive the generally analytical expressions of theanisotropic plastic stress field at a mixed-mode crack tip under plane and anti-planestrain.Applying these generally analytical expressions to the mixed-mode cracks,wecan obtain the analytical expressions of anisotropic plastic stress fields at the tips ofmixed-modeⅠ-Ⅲ,Ⅱ-ⅢandⅠ-Ⅱ-Ⅲcracks.  相似文献   

12.
Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressions of the perfectly plastic stress field at a crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the tips of Mode Ⅰ Mode Ⅱ, Mode Ⅲ and Mixed Mode Ⅰ-Ⅱ cracks are obtained.  相似文献   

13.
Under the action of Rayleigh damping, when the shear stress exerts at the boundary of the crack and causes one tip of the crack to rupture with varying velocity, by the singular perturbation method[1], we reduce the governing nonlinear partial differential equations to a system of linear ones and solve them by using generalized Fourier series.  相似文献   

14.
15.
A plane problem for a thermally insulated interface crack with a contact zone in an isotropic bimaterial under tension–shear mechanical loading and a temperature flux is considered. The expressions for the stresses and the electrical flux as well as for the derivatives of the displacement and the temperature jumps at the material interfaces via sectionally holomorphic mechanical and thermal potential functions are given. After the solution of the thermal problem the inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved exactly. The stresses at the interface and the stress intensity factors at the singular points are presented in a clear analytical form. Special attention is devoted to the case of a small contact zone when the stress intensity factors can be presented in form similar to the associated presentation for an “open” crack model. A transcendental equation and an asymptotic analytic formula for the determination of the real contact zone length are derived. It is shown that for a certain bimaterial this length as well as the correspondent stress intensity factor are defined by a single parameter which depends on the normal-shear loading and the heat flux.  相似文献   

16.
17.
18.
Under the condition that any perfectly plastic stress components at a crack tip are nothing but the functions of 0 only making use of equilibrium equations. Hill anisotropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastic stress fields at the slowly steady propagating tips of plane and anti-plane strain. Applying these general analytical expressions to the concrete cracks, the analytical expressions of anisotropic plastic stress fields at the-slowly steady propagating tips of Mode I and Mode III cracks are obtained. For the isotropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfectly plastic stress fields.  相似文献   

19.
Under the condition that all the perfectly plastic stress components at a crack tiP arethe functions ofθonly,making use of the Mises yield condition,steady-state movingequations and elastic perfectly-plastic constitutive equations,we derive the generallyanalytical expressions of perfectly plastic fields at a rapidly propagating plane-stress cracktip.Applying these generally analytical expressions to the concrete crack,we obtain theanalytical expressions of perfectly plastic fields at the rapidly propagating tips of,modesⅠandⅡplane-stress cracks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号