首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within the framework of the model of two interpenetrating continua, a horizontal laminar dilute-suspension flow in a vertical Hele-Shaw cell is investigated. Using the method of matched asymptotic expansions, an asymptotic model of the transverse migration of sedimenting particles is constructed. The particle migration in the horizontal section of the cell is caused by an inertial lateral force induced by the particle sedimentation and the shear flow of the carrier phase. A characteristic longitudinal length scale is determined, on which the particles migrate across the slot through a distance of the order of the slot half-width. The evolution of the particle number concentration and velocity fields along the channel is studied using the full Lagrangian method. Depending on the particle inertia parameter, different particle migration regimes (with and without crossing of the channel central plane by the particles) are detected. A critical value of the particle inertia parameter corresponding to the change in migration regime is found analytically. The possibility of intersection of the particle trajectories and the formation of singularities in the particle number concentration is demonstrated.  相似文献   

2.
A model transport system is considered in which a pulse of tracer molecules is advected along a flow channel with porous walls. The advected tracer thus undergoes diffusion, matrix-diffusion, inside the walls, which affects the breakthrough curve of the tracer. Analytical solutions in the form of series expansions are derived for a number of situations which include a finite depth of the porous matrix, varying aperture of the flow channel, and longitudinal diffusion and Taylor dispersion of the tracer in the flow channel. Novel expansions for the Laplace transforms of the concentration in the channel facilitated closed-form expressions for the solutions. A rigorous result is also derived for the asymptotic form of the breakthrough curve for a finite depth of the porous matrix, which is very different from that for an infinite matrix. A specific experimental system was created for validation of matrix-diffusion modeling for a matrix of finite depth. A previously reported fracture-column experiment was also modeled. In both cases model solutions gave excellent fits to the measured breakthrough curves with very consistent values for the diffusion coefficients used as the fitting parameters. The matrix-diffusion modeling performed could thereby be validated.  相似文献   

3.
A family of two-dimensional divergent channels with piecewise-constant velocity and pressure distributions over the wall is considered. The method of matched asymptotic expansions is applied to study the two-dimensional viscous incompressible flow at high but subcritical Reynolds numbers in the vicinity of a pressure jump point on the channel wall. It is shown that if the pressure difference is of the order O(Re?1/4), then in the vicinity of this point a classical region of interaction between the viscous boundary layer on the wall and the outer inviscid flow occurs. The problem formulated for the interaction region is solved numerically. The asymptotic values of the pressure difference corresponding to separationless flow are determined and the separation flow patterns are constructed.  相似文献   

4.
Using the dimensional and similarity analysis in a combination with the method of matched asymptotic expansions, the problem of particle deposition on boundaries in high-Reynolds number turbulent channel flows is studied. Based on the conventional two-layer scheme of a turbulent near-wall flow, the relations for the distributions of the particle concentration and the velocity fluctuation moments in the wall region are obtained. Asymptotic laws are derived for the particle deposition rate for diffusion-impact and inertial deposition regimes.  相似文献   

5.
On the basis of the method of matched asymptotic expansions, the problem of the outflow of a nonswirling axisymmetric laminar jet from a hole in a plane is solved for large Reynolds numbers. Since directly matching the leading terms of the asymptotic expansions for the axial boundary layer and the main flow region is impossible, the problem is solved by introducing an intermediate region. In the axial region the solution is the Schlichting solution [1] for an axisymmetric jet in the boundary-layer approximation, in the intermediate region the solution is found analytically, and in the main flow region the problem is reduced to that of viscous flow induced by a sink line in the presence of a transverse wall [2].  相似文献   

6.
The problem of the viscous interaction between a flow induced by a vortex filament and an orthogonal rigid surface is solved for high Reynolds numbers using the method of matched asymptotic expansions. In view of the impossibility of matching the principal terms of the asymptotic expansions directly for the near-axial boundary layer and the main flow zone, the solution is obtained by introducing two intermediate zones. In this case a logarithmic singularity of the axial velocity arises inevitably on the vortex filament. In the near-axial and intermediate zones the solution is obtained numerically and analytically, respectively, while in the main zone the problem reduces to the problem of the flow induced by a line of weakly swirled vortex-sinks.  相似文献   

7.
The asymptotic and numerical investigations of shock-induced boundary layers in gas-particle mixtures are presented.The Saffman lift force acting on a particle in a shear flow istaken into account.It is shown that particle migration across the boundary layer leads tointersections of particle trajectories.The corresponding modification of dusty gas model isproposed in this paper.The equations of two-phase sidewall boundary layer behind a shock wave moving at aconstant speed are obtained by using the method of matched asymptotic expansions.Themethod of the calculation of particle phase parameters in Lagrangian coordinates isdescribed in detail.Some numerical results for the case of small particle concentration aregiven.  相似文献   

8.
The time-periodic flow of a viscous incompressible fluid in a two-dimensional symmetric channel with slightly deformed walls is considered. The solution of the Navier-Stokes equations is constructed by means of the method of matched asymptotic expansions [1] at large characteristic Reynolds numbers. It is shown that in an unsteady flow a region of nonlinear perturbations surrounds the line of zero velocity inside the fluid. The formation and development of such nonlinear zones with respect to time is considered. An alternation of the topological features of the streamline pattern in the nonlinear perturbation zone is discovered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 17–23, July–August, 1987.The author is deeply grateful to V. V. Sychev for his formulation of the problem and his attentive attitude to my work.  相似文献   

9.
10.
The open equations of thermal turbulent boundary layer subjected to pressure gradient have been analysed by method of matched asymptotic expansions at large Reynolds number. The flow is divided into outer wake layer and inner wall layer. The asymptotic expansions are matched by Millikan-Kolmogorov hypothesis. The temperature profile in overlap region yields composite law which reduce to log. law for moderate pressure gradient and inverse half power law for strong adverse pressure gradient. In case of a shallow thermal wake, the matching result of outer wake layer reduces to composite temperature defect law, which is more general than the classical log. law. The comparison of data for thermal boundary layer with strong adverse pressure gradient is also considered. Received on 26 May 1998  相似文献   

11.
By the method of matching asymptotic expansions based on the Reynolds number [1, 2], the flow field is found and the resisting force is determined for the motion of a particle coated by a liquid film in a viscous incompressible fluid.  相似文献   

12.
13.
Summary The steady laminar flow of a viscous incompressible fluid through a two-dimensional channel, having fluid sucked or injected with different velocities through its uniformly porous parallel walls is considered. A solution for small suction Reynolds number has been given by the authors in a previous paper. The purpose of this paper is to present a solution valid for large Reynolds numbers for the cases of (i) suction at both walls, and (ii) suction at one wall and injection at the other. A technique of matching outer and inner expansions is used to obtain an asymptotic solution for both of these cases. Further a perturbation solution for the case of suction at one wall and injection at the other is obtained by choosing the difference between two wall velocities as the perturbation parameter. Both asymptotic and perturbation solutions are confirmed by exact numerical solutions. As expected, the resulting solutions show the presence of the usual suction boundary layers in both types of flow considered in this paper.  相似文献   

14.
An approach known from the theory of matched asymptotic expansions involving the isolation of subregions with different scales is used to study flows which are assumed to be described by the boundary layer equations almost everywhere near the surface except for a fairly narrow zone in which the inflowing boundary layers interact. Two characteristic types of interaction are identified. An approximate theory describing the flow in the interaction zone, which makes it possible to locate the position of the interaction zone on the surface, is proposed. The interaction flow on the end wall of a vane channel is calculated subject to certain simplifications. The results of an experimental investigation of this flow are presented and it is shown that the theoretical model proposed describes the three-dimensional corner separation which occurs in the neighborhood of the line of intersection of the end wall and the convex edge of the vane.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 116–123, May–June, 1988.  相似文献   

15.
The unsteady incompressible Navier–Stokes equations are formulated in terms of vorticity and stream-function in generalized curvilinear orthogonal co-ordinates to facilitate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the vorticity transport equation using the alternating direction implicit method, whereas the streamfunction equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a backstep in a doubly infinite channel, using clustered conformal co-ordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behaviour of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honour the multiple length scales of the separated flow model problem. The asymptotic behaviour of the finite differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order-accurate wiggle-free solutions, i.e. with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem, prior to the onset of three-dimensionality in the experiment.  相似文献   

16.
A method is developed for calculating the characteristics of a laminar boundary layer near a body contour corner point, in the vicinity of which the outer supersonic stream passes through a rarefaction flow. In the study we use the asymptotic solution of the Navier-Stokes equations in the region with large longitudinal gradients of the flow functions for large values of the Reynolds number, the general form of which was used in [1].The pressure, heat flux, and friction distributions along the body surface are obtained. For small pressure differentials near the corner the solution of the corresponding equations for small disturbances is obtained in analytic form.The conventional method for studying viscous gas flow near body surfaces for large values of the Reynolds number is the use of the Prandtl boundary layer theory. Far from the body the asymptotic solution of the Navier-Stokes equations in the first approximation reduces to the solution of the Euler equations, while near the body it reduces to the solution of the Prandtl boundary layer equations. The characteristic feature of the boundary layer region is the small variation of the flow functions in the longitudinal direction in comparison with their variation in the transverse direction. However, in many cases this condition is violated.The necessity arises for constructing additional asymptotic expansions for the region in which the longitudinal and transverse variations of the flow functions are quantities of the same order. The general method for constructing asymptotic solutions for such flows with the use of the known method of outer and inner expansions is presented in [1].In the following we consider the flow in a laminar boundary layer for the case of a viscous supersonic gas stream in the vicinity of a body corner point. Behind the corner the flow separates from the body surface and flows around a stagnant zone, in which the pressure differs by a specified amount from the pressure in the undisturbed flow ahead of the point of separation. A pressure (rarefaction) disturbance propagates in the subsonic portion of the boundary layer upstream for a distance which in order of magnitude is equal to several boundary layer thicknesses. In the disturbed region of the boundary layer the longitudinal and transverse pressure and velocity disturbances are quantities of the same order. In this study we construct additional asymptotic expansions in the first approximation and calculate the distributions of the pressure, friction stress, and thermal flux along the body surface.  相似文献   

17.
We consider a two-dimensional analog of Helmholtz resonator with walls of finite thickness in the critical case when there exists an eigenfrequency which is the limit of poles generated by both the bounded component of the resonator and the narrow connecting channel. Under the assumption that the limit eigenfrequency is a simple eigenfrequency of the bounded component, the asymptotics of two poles converging to this eigenfrequency are constructed by using the method of matching asymptotic expansions. Explicit formulas for the leading terms of the asymptotics of poles and of the solution of the scattering problem are obtained.  相似文献   

18.
Higher-order boundary-layer effects for natural convection flow along inclined flat plates (of both positive and negative inclinations) with a uniform heat flux surface condition in a saturated porous medium are studied. Using the method of matched asymptotic expansions the three terms in inner and outer expansions have been obtained. It is shown that the first eigenfunction for this considered problem coincides with 0(? 2)-term in the inner expansion.  相似文献   

19.
The nonlinear problem of determining the contact stresses and the contact zone under the base of a narrow annular punch is studied. An asymptotic model of one–sided contact along the line is constructed by the method of matched asymptotic expansions. Explicit asymptotic formulas for the line–pressure density are obtained. The asymptotic representation of the contact arc is given.  相似文献   

20.
The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号