首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of Candida albicans growth was shown by lemon grass oil (LGO) and lemon grass oil vapour (LGO vapour) at 288 μg/ml and 32.7 μg/ml concentration, respectively. The assessment of cell damage by LGO and LGO vapour was done through scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM) observations. SEM analysis showed complete rupture of C. albicans cells treated with LGO vapour while in those treated with LGO in broth, only shrinkage was observed. TEM study showed the alterations in morphology upon treatment with LGO while complete degradation of the Candida cells was observed in case of LGO vapour. Further three dimensional morphological changes and roughness of the cells have also been evaluated with AFM after the treatment with LGO & LGO vapour. Roughness (root mean square value) was significantly higher in control C. albicans cells (211.97 nm) than LGO (143 nm) and LGO vapour (5.981 nm) treated cells. The results for the first time demonstrate relatively higher efficacy of LGO vapours for inhibition and cellular damage of C. albicans cells as compared to the LGO in liquid phase. This suggests the potential application of LGO vapour phase against infections caused by C. albicans.  相似文献   

2.
Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed.  相似文献   

3.
Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3 s of HIFU irradiation with 20, 32, 55 and 73 W cm−2 intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3 s, 73 W cm−2) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU + TiO2 in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU + TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU + TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future.  相似文献   

4.
《Applied Surface Science》2005,239(3-4):432-436
Boron nitride (BN) nanometer thin films are synthesized on Si (1 0 0) substrates by RF reactive magnetron sputtering. Then the film surfaces are treated in the case of the base pressure below 5 × 10−4 Pa and the temperature of 800 and 1000 °C, respectively. And the films are studied by Fourier transform infrared spectra (FTIR), atomic force microscopic (AFM) and field emission characteristics at different annealing temperature. The results show that the surface heat treatment makes no apparent influence on the surface morphology of the BN films. The transformations of the sample emission characteristics have to do with the surface negative electron affinity (NEA) of the films possibly. The threshold electric fields are lower for BN samples without heat-treating than the treated films, which possibly ascribed to the surface negative electron affinity effect. A threshold field of 8 V/μm and the emission current of 80 μA are obtained. The surface NEA is still presence at the heat treatment temperature of 800 °C and disappeared at temperature of 1000 °C.  相似文献   

5.
This study investigated the targeting and ultrasound-triggered injury of cancer cells using anticancer drug-free liposomes that contained an emulsion of perfluoropentane (ePFC5) and were co-modified with avidin as a targeting ligand for cancer cells and the hemagglutinating virus of Japan (HVJ) envelope to promote liposome fusion with the cells. These liposomes are designated as ePFC5-loaded avidin/HVJ liposomes. ePFC5-loaded liposomes were sensitized to ultrasound irradiation. Liposomes modified with avidin alone (avidin liposomes) showed binding to MCF-7 human breast cancer cells, and liposomes modified with HVJ envelope alone (HVJ liposomes) were found to fuse with MCF-7 cells. The irradiation of MCF-7 cells with 1 MHz ultrasound (30 s, 1.2 W/cm2, duty ratio 30%) combined with ePFC5-loaded avidin/HVJ liposomes resulted in a decrease in cell viability at 1 h after irradiation to 43% of that of controls without ultrasound irradiation or liposomes. The cell viability was lower than that of cells treated with ultrasound irradiation with ePFC5-loaded avidin liposomes or ePFC5-loaded HVJ liposomes. This indicates that co-modification of liposome with avidin and HVJ envelope could enhance ultrasound-induced cell injury in the presence of ePFC5-loaded liposomes.  相似文献   

6.
We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm2, 15 s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24 h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells.  相似文献   

7.
The influence of urban morphology of low-density built-up areas on spatial noise level attenuation of flyover aircrafts is investigated at a mesoscale. Six urban morphological parameters, including Building Plan Area Fraction, Complete Aspect Ratio, Building Surface Area to Plan Area Ratio, Building Frontal Area Index, Height-to-Width Ratio, and Horizontal Distance of First-row Building to Flight Path, have been selected and developed. Effects of flight altitude and horizontal flight path distance to site, on spatial aircraft noise attenuation, are examined, considering open areas and façades. Twenty sampled sites, each of 250 m * 250 m, are considered. The results show that within 1000 m horizontal distance of flight path to a site, urban morphology plays an important role in open areas, especially for the buildings with high sound absorption façades, where the variance of average noise level attenuation among different sites is about 4.6 dB at 3150 Hz. The effect of flight altitude of 200–400 ft on average noise level attenuation is not significant, within about 2 dB at both 630 Hz and1600 Hz in open areas. Urban morphological parameters influence the noise attenuation more in open areas than that on façades. Spatial noise attenuation of flyover aircrafts is mainly correlated to Building Frontal Area Index and Horizontal Distance of First-row Building to Flight Path.  相似文献   

8.
We have investigated the structure and morphology of the InAs(1 1 1)B surface using Low Energy Electron Diffraction (LEED), Scanning Tunneling Microscopy (STM) and Scanning Electron Microscopy (SEM). The surface was prepared by annealing in the presence of an arsenic or atomic hydrogen pressure. A (2 × 2) reconstruction that changes into a (1 × 1) unreconstructed surface after prolonged annealing was observed irrespective of preparation method, while the surface morphology was distinctly different in the two cases. Detailed atomic scale models are proposed to explain the behavior. Deposition of Au aerosol nanoparticles on the sample prior to annealing was found to have no effect on the surface reconstruction. The Au particles were found to sink into the surface.  相似文献   

9.
The synthesis of facet-controlled structures with precise morphology and exposed reactive surface is one of the key research challenges. We effectively endeavoured to obtain the monodisperse octahedral bismuth vanadate microcrystals with exposed {1 0 1},{2 0 0},{3 1 2} and {0 2 1} dominant facets through an optimized sonochemical assisted hydrothermal process. A pulse sonication (5-s ON and 2-s OFF cycle, 21 W ultrasonic power and 20 kHz ultrasonic frequency) for 30 mins followed by 1 h hydrothermal treatment was found to yield the preferred octahedral morphology. The microscopic and X-ray analysis suggested a potent role of ultrasonic waves for the initial seed growth and its evolution into a well-defined monodisperse microcrystals. The density functional theory (DFT) calculations revealed strongly localized bandgap states with a bandgap of ~2.47 eV. The PEC measurements for water oxidation demonstrated the efficacy of these microcrystals as photoanode. Notably, the optimized octahedral BiVO4 microstructure exhibited a superior performance as evident from photocurrent density ~0.9 mAcm−2 at 1.23 V vs. RHE and %IPCE value of ~22% compared to analogous photoanodes under visible light irradiation.  相似文献   

10.
Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60 s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4–9%) and polyphenols (30–35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment.  相似文献   

11.
Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm2 for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm2 for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio = 1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation.  相似文献   

12.
Green tea has shown remarkable anti-inflammatory and cancer chemopreventive effects in many animal tumor bioassays, cell culture systems and epidemiological studies. Many of these biological effects of green tea are mediated by epigallocatechin 3-gallate, the major polyphenol present therein. In this study, the differential biological responses of green tea polyphenols (GTP) were examined in normal rat osteoblasts (NRO) vs. human osteosarcoma (MG-63 and Saos-2) cells. The GTP treatment with micromolar concentrations (0.1, 1, 10 and 100 μM for 24 h) resulted in dose-dependent inhibitions of cell growth and alkaline phosphatase activity, morphological alterations, G0/G1-phase arrest of the cell cycle and induction of apoptosis in both osteosarcoma cells, but not in the NRO. These results suggest that the GTP treatment may be contributed to the differential regulation of cell cycle in normal cells and cancer cells, which can be exploited to craft strategies for the physiological preservation of cells or tissues by GTP.  相似文献   

13.
Ultrasound-targeted microbubble destruction (UTMD) technique can be potentially used for non-viral delivery of gene therapy. Targeting wild-type p53 (wtp53) tumor suppressor gene may provide a clinically promising treatment for patients with ovarian cancer. However, UTMD mediated gene therapy typically uses non-targeted microbubbles with suboptimal gene transfection efficiency. We synthesized a targeted microbubble agent for UTMD mediated wtp53 gene therapy in ovarian cancer cells. Lipid microbubbles were conjugated with a Luteinizing Hormone–Releasing Hormone analog (LHRHa) via an avidin–biotin linkage to target the ovarian cancer A2780/DDP cells that express LHRH receptors. The microbubbles were mixed with the pEGFP-N1-wtp53 plasmid. Upon exposure to 1 MHz pulsed ultrasound beam (0.5 W/cm2) for 30 s, the wtp53 gene was transfected to the ovarian cancer cells. The transfection efficiency was (43.90 ± 6.19)%. The expression of wtp53 mRNA after transfection was (97.08 ± 12.18)%. The cell apoptosis rate after gene therapy was (39.67 ± 5.95)%. In comparison with the other treatment groups, ultrasound mediation of targeted microbubbles yielded higher transfection efficiency and higher cell apoptosis rate (p < 0.05). Our experiment verifies the hypothesis that ultrasound mediation of targeted microbubbles will enhance the gene transfection efficiency in ovarian cancer cells.  相似文献   

14.
There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer’s arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(4):1482-1488
In this study, we demonstrated the feasibility of targeted and ultrasound-triggered drug delivery using liposomes co-modified with single stranded DNA aptamers that recognized platelet-derived growth factor receptors (PDGFRs) as targeting ligands for breast cancer cells and poly(NIPMAM-co-NIPAM) as the thermosensitive polymer (TSP) to sensitize these liposomes to high temperature. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation for 30 s at 0.5 W/cm2 as well as the case under incubation for 5 min at 42 °C. Ultrasound-triggered calcein release from TSP liposomes was due to an increased local temperature, resulting from cavitation bubble collapse induced by ultrasound, and not due to an increase in the bulk medium temperature. Liposomes modified with PDGFR aptamers (APT liposomes) bound to MDA-MB-231 human breast cancer cells through PDGFR aptamers; however, they did not bind to primary human mammary epithelial cells (HMECs). The binding of APT liposomes was greatest for MDA-MB-231 cells, followed by MCF-7, WiDr, and HepG2 cancer cells. In a cell injury assay using doxorubicin (DOX)-loaded APT/TSP liposomes and ultrasound irradiation, cell viability of MDA-MB-231 at 24 h after ultrasound irradiation (1 MHz for 30 s at 0.5 W/cm2) with DOX-loaded APT/TSP liposomes was 60%, which was lower than that with ultrasound irradiation and DOX-loaded TSP liposomes or with DOX-loaded APT/TSP liposomes alone.  相似文献   

16.
The morphological and ultrastructural features of the spermatozoon in Brachionus calyciflorus are described using light, fluorescence and transmission electron microscopy (TEM). The mature spermatozoon, which appears to be thread-like, is composed of a slightly expanded anterior of cell body region and a flagellum region without acrosome. The cell body region and flagellum region are respectively 16–27 μm and 20–33 μm in length (n = 60). The spermatozoon is characterized by a mass of dense tubular materials, which occupy most of the cell. Some mitochondria are distributed around the nuclear region in the anterior of the cell body region, while in the posterior portion of cell body, the chromatin often contains a single lobated nucleus arranged at the center of cell. The flagellum contains the classic axoneme (9 × 2 + 2) and possesses lateral undulating membrane. Mature B. calyciflorus males have no germ cell stages earlier than the spermatids in the testis. TEM examination reveals rigid rods as well as predominant typical spermatozoon in the testis. Observations, based on successive photographs and videos, enabled a first-time recording of the unique inverted movement of the spermatozoon, which indicated that the movement of the spermatozoon is driven by the flagellum. Our study also provides further supplementary insights into the phylogenetic systematics of the Rotifera.  相似文献   

17.
Cell–cell adhesion is probably the best cell function to be considered for biophysical modeling from micrometer to the molecular level. The aim of this study is to find a relation between the bulk properties of erythrocytes suspension (like surface tension and viscosity) and erythrocytes adhesion. Our results showed that there is a strong correlation between surface tension and adhesion number (r2 = 0.85) and moderate correlation between erythrocytes suspension viscosity and adhesion number (r2 = 0.55). Our results were indicated that bulk properties of erythrocytes can affect directly on microscopic properties of erythrocytes.  相似文献   

18.
Sulphur doped ZnO nanopowders have been prepared by sonochemical method in continuous (CS) and pulsed (PS) modes. Precipitation time was found to vary with input power of applied ultrasound. X-ray diffraction studies show the formation hexagonal wurtzite phase of nano ZnO but variation in size, strain and lattice parameters was observed in the samples synthesized through CS and PS modes with different input power. Surface morphology of the samples changed significantly with input power of the pulse as observed from scanning electron microscopic results. Well defined and c-axis oriented nanorods and multipodes were observed with power setting of 187.5 W whereas in all other cases no definite morphology was observed. UV absorption studies show higher value of absorbance for ZnO:S. Further, the absorption band becomes sharp for the samples prepared with power setting of 225 W. PL spectra show several bands due to different transitions in the region of 400–780 nm which have been explained in the light of excitonic and defect induced transitions in ZnO.  相似文献   

19.
《Surface science》2003,470(1-2):139-148
STM tip-induced surface roughening is reported for a 6 Å Fe film grown on vicinal Mo(1 1 0) at 760 ± 15 K. Using a STM tip of the antiferromagnetic alloy MnNi and tunneling parameters of 0.1 nA and 70 mV, the film morphology was completely transformed over a period of 1 h at room temperature. The results indicate that there is a strong promotion of surface diffusion and interlayer mass transport by the local electric field between the tip and sample and/or a magnetic interaction between the tip and the film. The strain state of the film plays a part in the propagation of this transformation across the scanned area.  相似文献   

20.
《Solid State Ionics》2006,177(5-6):515-521
Three kinds of samples of Li[Ni1 / 3Co1 / 3Mn1 / 3]O2 were prepared respectively from direct solid-state reaction method, combustion method and co-precipitation route and their microscopic structural features have been investigated using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), magnetic susceptibility measurement and X-ray photoelectron spectroscopy (XPS). The microscopic features such as uniform distribution of transition metal ions at 3b-site and the site-exchange ratio between lithium and nickel were found to be significantly dependent on the synthetic routes. The electrochemical properties of three samples were monitored using 2016 coin-cell by galvanostatic charge–discharge cycling test and cyclic voltammetry, which showed that the microscopic structural features are deeply related with the electrochemical performance. The obtained results also suggested that the combustion method may become a much simple alternative synthetic route to the complicate co-precipitation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号