首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The finite element method is used to numerically simulate localized necking in AA6111-T4 under stretching. The measured EBSD data (grain orientations and their spatial distributions) are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. We assume that localized necking is associated with surface instability, the onset of unstable growth in surface roughening. It is demonstrated that such a surface instability/necking is the natural outcome of the present approach, and the artificial initial imperfection necessitated by the macroscopic M–K approach [Marciniak and Kuczynski (1967). Int. J. Mech. Sci. 9, 609–620] is not relevant in the present analysis. The effects of spatial orientation distribution, material strain rate sensitivity, texture evolution, and initial surface topography on necking are discussed. It is found that localized necking depends strongly on both the initial texture and its spatial orientation distribution. It is also demonstrated that the initial surface topography has only a small influence on necking.  相似文献   

2.
Localization phenomena in thin sheets subjected to plane stress tension are investigated. The sheet is modelled as a polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is developed to simulate large strain behaviour. Accordingly, each material point in the specimen is considered to be a polycrystalline aggregate consisting of a large number of FCC grains. The Taylor model of crystal plasticity theory is assumed. This analysis accounts for initial textures as well as texture evolution during large plastic deformations. The numerical analysis incorporates certain parallel computing features. Simulations have been carried out for an aluminum sheet alloy, and the effects of various parameters on the formation and prediction of localized deformation (in the form of necking and/or in-plane shear bands) are examined.  相似文献   

3.
将基于应变软化玻璃状高分子材料微观特征建立的BPA8-链分子网络模型引入UpdatingLagrange有限元方法,建立了适于变形局部化分析的大变形弹塑性有限元驱动应力法.在此基础上,数值模拟了初始各向同性高分子材料平面应变拉伸变形局部化的传播过程.探讨了BPA模型对具有加工硬化特性的结晶性高分子材料变形分析的适应性;分析了局部化传播过程中颈缩截面的非均匀应力三轴效应;最后,讨论了网格尺寸以及初始几何不均匀性对颈缩扩散以及应力三轴效应的影响  相似文献   

4.
A uniaxial tension sheet metal coupon with a tapered instead of a straight gage section has been used for centering the location of diffuse neck and for measuring sheet stretchability in a non-uniform strain field. A finite element analysis of such a tensile coupon made of automotive steel sheet metals has been carried out to assess the effect of the tapered gage section geometry and material plastic strain hardening characteristics on the development of local plastic deformation pattern and local stress state, especially beyond the onset of diffuse necking but before localized necking. In particular, the finite element analysis was used in this study to evaluate the accuracy and reliability of an experimental data analysis method for estimating the post-necking effective plastic stress-strain curve based on the direct local surface axial plastic strain measurements for base metal, heat-affected zone, and weld metals of a dual-phase steel DP600. It is concluded that the estimated lower and upper bounds of the effective stress-strain curve at large strains are not satisfactory for low strain-hardening materials such as heat-affected zone and weld metals with the tapered tension coupons. A simple correction method utilizing only the additional local surface strain measurement in the transverse direction is proposed and it is shown to be effective in correcting the estimated effective stress-strain curve of dual-phase steel weld metals obtained for two tapered gage section geometries.  相似文献   

5.
The initiation and growth of necks in polymer tubes subjected to rapidly increasing internal pressure is analyzed numerically. Plane strain conditions are assumed to prevail in the axial direction. The polymer is characterized by a finite strain elastic–viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program. Numerical results for neck development are illustrated and discussed for tubes of various thicknesses. The sensitivity to the wave number of the thickness imperfections is studied with a focus on comparing a long wave length imperfection and a short wave length imperfection. After some thinning down at the necks, the mode of deformation switches to neck propagation along the circumference of the tube. A case is shown in which the necks have propagated along the entire tube wall, so that network locking in the polymer results in high stiffness against further expansion of the tube. The rate dependence of the necking behavior gives noticeable differences in neck development for slow loading versus fast loading.  相似文献   

6.
汪凌云 《力学进展》1993,23(3):398-406
本文评述了金属成形过程中塑性失稳现象(剪切带、颈缩、皱曲)研究的最新进展和仍存在的问题,着重讨论了塑性失稳预报和本构关系选择的密切关系,指出了塑性失稳预报结果取决于所选择的本构关系。还讨论了材料各向异性、应变率敏感性、不均匀性及其幅度、惯性等因素对塑性失稳的影响。除此之外,对作为分析塑性失稳的基本理论工具——Hill分叉准则亦作了简要讨论。   相似文献   

7.
Strain localization has become an attractive subject in geomechanics during the past decade. Shear bands are well known to develop in clay specimens during the straining process. Strain localization is closely related to plastic instability. In the present paper, a non-linear instability condition for the viscoplastic strain softening model during the creep process is firstly obtained. It is found that the proposed viscoplastic model is capable of describing plastic instability. Secondly, a two-dimensional linear instability analysis is performed and the preferred orientation for the growth of fluctuation and the instability condition are derived. It is worth noting that the two instability conditions are equivalent. Finally, the behavior of the clay is numerically analyzed in undrained plane-strain compression tests by the finite element method, considering a transport of pore water in the material at a quasi-static strain rate. The numerical results show that the model can predict strain localization phenomena, such as shear banding. From the numerical calculations, the effects of strain rate and permeability are discussed.  相似文献   

8.
本文对于涉及韧性金属大变形中颈缩与剪切带断裂一类高度非线性变形局部化问题进行了弹塑性有限元数值模拟。采用改进的J2形变理论微分形式公式与交叉三角形四边形单元有限元网格,详细研究了应变硬化指数及初始表面不均匀特性的平面应变拉伸颈缩和剪切带形成的综合影响,给出此类问题的断裂机制图。  相似文献   

9.
Hydrogels are capable of coupled mass transport and large deformation in response to external stimuli. In this paper, a nonlinear, transient finite element formulation is presented for initial boundary value problems associated with swelling and deformation of hydrogels, based on a nonlinear continuum theory that is consistent with classical theory of linear poroelasticity. A mixed finite element method is implemented with implicit time integration. The incompressible or nearly incompressible behavior at the initial stage imposes a constraint to the finite element discretization in order to satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condition for stability of the mixed method, similar to linear poroelasticity as well as incompressible elasticity and Stokes flow; failure to choose an appropriate discretization would result in locking and numerical oscillations in transient analysis. To demonstrate the numerical method, two problems of practical interests are considered: constrained swelling and flat-punch indentation of hydrogel layers. Constrained swelling may lead to instantaneous surface instability for a soft hydrogel in a good solvent, which can be regulated by assuming a stiff surface layer. Indentation relaxation of hydrogels is simulated beyond the linear regime under plane strain conditions, in comparison with two elastic limits for the instantaneous and equilibrium states. The effects of Poisson’s ratio and loading rate are discussed. It is concluded that the present finite element method is robust and can be extended to study other transient phenomena in hydrogels.  相似文献   

10.
The purpose of this paper is to present an improved analysis of the quasi-static behavior of a typical radial filament in a brush-type super flywheel. The material is assumed to be perfectly elastic with a finite Poisson's ratio. It is shown that the rotational speed at which tensile instability resulting in filament necking occurs can be considerably lower than that predicted by previous analyses reported in the literature. Numerical results are presented in dimensionless form for ranges of parameters of current design interest.  相似文献   

11.
Unlike metals, necking in polymers under tension does not lead to further localization of deformation, but to propagation of the neck along the specimen. Finite element analysis is used to numerically study necking and neck propagation in amorphous glassy polymers under plane strain tension during large strain plastic flow. The constitutive model used in the analyses features strain-rate, pressure, and temperature dependent yield, softening immediately after yield and subsequent orientational hardening with further plastic deformation. The latter is associated with distortion of the underlying molecular network structure of the material, and is modelled here by adopting a recently proposed network theory developed for rubber elasticity. Previous studies of necking instabilities have almost invariably employed idealized prismatic specimens; here, we explicitly account for the unavoidable grip sections of test specimens. The effects of initial imperfections, strain softening, orientation hardening, strain-rate as well as of specimen geometry and boundary conditions are discussed. The physical mechanisms for necking and neck propagation, in terms of our constitutive model, are discussed on the basis of a detailed parameter study.  相似文献   

12.
利用LS-DYNA三维动力有限元软件对延性金属环的膨胀运动与断裂进行数值模拟。在膨胀环圆周加入泊松随机分布断裂成核点,利用J-C本构模型,研究诸如颈缩形成时间、颈缩区与均匀变形区的温度、应力、应变的对比等颈缩形成机理,以及讨论了环圆周上断裂成核点的泊松随机分布碎裂特性的影响。数值计算结果与实验结果、理论分析结果吻合较好,表明施加泊松随机断裂成核点的数值模拟方法是合理的。  相似文献   

13.
To more accurately capture the onset of localized necking and obtain necking limit strains, this paper proposes a method of detecting the onset of localized necking in the Marciniak test (i.e. under in-plane deformation). The method is merely based on the measured surface geometry of the test specimen using digital image correlation (DIC) techniques. It was inspired by the observation of a sudden increase of the surface curvature obtained from 2D curvature fits along the direction across the surface of the sheet. This increase of the surface curvature is detected just before the dimples, which form the final localized neck, become obvious in the DIC measurements. The appearance of this signal is explained by a neck expansion theory defined by propagation of the instability along the direction of the neck, which is a physical behavior of materials.  相似文献   

14.
The effect of superimposed hydrostatic pressure on fracture in round bars under tension is studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that while the superimposed hydrostatic pressure has no noticeable effect on necking, it increases the fracture strain due to the fact that a superimposed pressure delays or completely eliminates the nucleation, growth and coalescence of microvoids or microcracks. The experimentally observed transition of the fracture surface, from the cup-cone mode under atmospheric pressure to a slant structure under high pressure, is numerically reproduced. It is numerically proved that the superimposed hydrostatic pressure has no effect on necking for a damage-free round bar under tension.  相似文献   

15.
By using a simplified constitutive model of a pointed vertex on subsequent yield loci, namely, such that the equations of deformation-theory of rigid-plastic solids apply for fully-active stress increments, the onset of localized necking under biaxial stretching has been predicted. The predictions agree reasonably well with reported experimental observations. Since localized necking under biaxial stretching of a uniform and homogeneous sheet is impossible when flow theories of plasticity with smooth yield-loci are used, this result supports the hypothesis of vertex-formation on the yield locus under continued plastic flow. The implications of this conclusion with respect to the study of the inception of ductile fracture in solids, viewed as a material instability, may be far-reaching. Still, explanations based on a smooth yield-locus but small initial inhomogeneities cannot be ruled out, and both initial imperfections and yield-vertex effects may contribute in general to localization instabilities.  相似文献   

16.
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The non-linear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.  相似文献   

17.
Necking localization is common unstable behavior in ductile solids. This paper describes the unified necking localization mechanism. After describing one-dimensional instability problem, general material and structural instability criteria are formulated and the formulation is validated by non-linear finite element analysis. The trigger of necking localization is structural bifurcation and the behavior from a uniformly deformed state to ultimate localization just before fracture is continuous structural instability.  相似文献   

18.
Two recently proposed developments of the Glass–Rubber constitutive model for glassy polymers treat the viscoplastic deformation as intrinsically anisotropic, and incorporate the kinetics of structural evolution. These features enable the model to capture better the distinctive features of glassy polymers’ constitutive response: post-yield strain-softening and strain-hardening and effects of pre-existing molecular orientation. They have been combined to form a new variant of the model, and the consequences for necking have been explored. Uniaxial extension of prismatic bars was simulated using the finite element method, employing a numerical implementation of the new model, with material parameters of polystyrene. Strain localization predicted with the new model was found to be systematically retarded as compared to predictions with the original (intrinsically isotropic) version of the model, for the same conditions. In particular, the effect of frozen-in molecular orientation was examined. This was found to retard strain localization for stretching parallel to the orientation direction, for both models. But the localization predicted with the new model was always significantly less pronounced than with the original model. Indeed, for sufficiently high pre-orientation (e.g. a uniaxial stretch of 2.2), localization could be effectively prevented with the new model, under conditions when otherwise failure by necking is predicted. Such results can all be explained in terms of a linear stability analysis. They suggest that all previous simulations of necking in glassy polymers made using intrinsically isotropic representations of polymer viscoplasticity may have over-predicted the rate of strain localization.  相似文献   

19.
Accurate measurements of important tensile properties of thin metal foils are often quite difficult to achieve in uniaxial tests because of sample-preparation difficulties and the tensile instability called necking. Consequently, hydraulic bulge tests have been introduced as a successful means of suppressing these problems through the use of a simplified specimen geometry and biaxial rather than uniaxial tensile-stress states. Considerable effort has been made by various investigators to relate such biaxial stress-strain and ductility data to uniaxial data, generally following the assumption that the bulge is shaped like a spherical cap. The present study evaluates this assumption for foils by measuring actual shapes with unprecedented accuracy and detail using the two-source holographic technique and a polynomial-spline computer analysis of the resulting interferograms. These measurements were made on nine specimens of 0.127-mm-thick annealed rolled copper foil which had been deformed into bulges of varying heights up to rupture. A comparison is made between the measured shapes and the spherical-cap shape generally assumed in the interpretation of bulge-test data. The spherical assumption gives results which are reasonably valid for the later stages of deformation. Indeed, the stress-strain curve obtained from bulge testing corresponds closely with the uniaxial tensile curves for this material. The strain at failure (i.e., elongation) was greater in the biaxial bulge test than in the uniaxial test but not nearly as great as the strain expected from a theoretical model proposed by Hill. However, all the specimens measured exhibited localized areas with larger radii of curvature. The presence of these “flats” may be associated with a mode of failure in the bulge test which corresponds to necking instability in the uniaxial test, and thereby account for the limited strain to failure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号