首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glass-forming region of the GeSe2–In2Se3–KI system was reported firstly. The dependence of physical, thermal and optical properties on compositions as formula of (1 ? x)(0.8GeSe2–0.2In2Se3)–xKI (x = 0, 0.1, 0.2, 0.3) chalcohalide glasses was investigated. The allowed direct transition and indirect transition, and Urbach energy of samples were calculated according to the classical Tauc equation. The results show that the glass system has good thermal stability and that there is an obvious blue-shift at the visible absorbing cutting-off edge. When the dissolved amount of KI increased from 0 to 30 mol%, the direct optical band gap and the indirect optical band gap were in the range from 1.617 to 1.893 eV and 1.573 to 1.857 eV. With the decrease of the molar refraction the refractive index decreases, optical band gap and metallization criterion increase. The relationship between energy band gap and metallization criterion was analyzed and the optical properties of chalcohalide glasses were summarized.  相似文献   

2.
The study of excitation mechanisms in the region before the jet confluence of a high-power two-jet plasma used for analysis of different powders has been undertaken. Distribution of excited levels of Fe atoms and ions according to the Boltzmann population was found. Measuring Fe atomic and ionic excitation temperatures showed their considerable difference (≈ 2000–2500 K). The effect of argon on line intensities of a wide range of elements was investigated by the experiment with argon covering. A negligible effect of argon covering on line intensities of atoms with ionization energy of < 8 eV allows one to assume their predominant excitation by electron impact. The argon participation in excitation of atoms having ionization energy of > 8 eV was revealed. This is likely to be due to Penning ionization by metastable argon followed by ion recombination with an electron and stepwise de-excitations. A more pronounced effect of argon covering was observed for ionic lines of investigated elements with total excitation energy ranging from 11 to 21 eV. Penning ionization followed by electron impact is believed to be a probable mechanism for ion excitation. The contribution of metastable argon to excitation processes results in departure from local thermodynamic equilibrium and different atomic and ionic excitation temperatures.  相似文献   

3.
High quality lead telluride thin films were directly deposited onto n-type silicon (1 0 0) substrates by electrodeposition at room temperature. The deposition mechanism was studied using cyclic voltammetry. The films were characterized by scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that the deposited PbTe films exhibited a polycrystalline rock salt structure and good optical properties with a direct band gap of 0.31 eV.  相似文献   

4.
A new donor–acceptor (D–A) conjugated polymer (PDTOF) containing 3,4-didodecyloxythiophene, fluorene and 1,3,4-oxadiazole units is synthesized by using Wittig reaction methodology. The synthesized polymer is characterized by 1H NMR, FTIR, GPC, and elemental analysis. The optical energy band gap of the polymer is found to be 2.42 eV as calculated from the onset absorption edge. The electrochemical studies of PDTOF reveal that, the HOMO and LUMO energy levels of the polymer are ?5.45 eV and ?3.58 eV, respectively. The polymer is thermally stable up to 320 °C. Polymer light-emitting diode devices are fabricated with a configuration of ITO/PEDOT: PSS/PDTOF/Al using PDTOF as the emissive layer. The electroluminescence (EL) spectrum of the device showed green emission with CIE coordinate values (0.34, 0.47). By current density–voltage characteristics, threshold voltage of the PLED device is found to be 6.5 V.  相似文献   

5.
A cost-effective successive ionic layer adsorption and reaction (SILAR) method was used to deposit copper (I) thiocyanate (CuSCN) thin films on glass and steel substrates for this study. The deposited thin films were characterized for their structural, morphological, optical and electrochemical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectroscopy and VersaSTAT potentiostat. A direct band gap of 3.88 eV and 3.6 eV with film thickness of 0.7 μm and 0.9 μm was obtained at 20 and 30 deposition cycles respectively. The band gap, microstrain, dislocation density and crystal size were observed to be thickness dependent. The specific capacitance of the CuSCN thin film electrode at 20 mV/s was 760 F g−1 for deposition 20 cycles and 729 F g−1 for deposition 30 cycles.  相似文献   

6.
Nitrogen and sulfur co-doped SrTiO3 was prepared by high energy grinding of the mixture of SrTiO3 and thiourea. A new band gap in visible light region (522 nm) corresponding to 2.37 eV could be formed by the co-doping. The photocatalytic activity for nitrogen monoxide oxidation of SrTiO3 in visible light region especially in the long wavelength range (λ > 510 nm) could be improved greatly. Under the irradiation of light with wavelength larger than 510 nm, the photocatalytic activity of nitrogen and sulfur co-doped SrTiO3 was 10.9 times greater than that of pure SrTiO3. The high visible light photocatalytic activity of this substance may be due to the formation of a new band gap that enables to absorb visible light effectively.  相似文献   

7.
Bulk crystal properties of Ag2SnO3 were investigated with the advantage of density functional theory. The whole structure has layered feature: hexagonal metallic planes formed by Ag atoms and distorted octahedrons of SnO6 clusters are configured alternatively along c axis of hexagonal cell. The cohesive energy is about ?2.792 eV/atom, which is less than SnO2. The Debye temperature of Ag2SnO3 is about 231.6 K, and the bulk and shear moduli are 62.13 and 20.63 GPa, respectively. Band structure and DOS show the compound has a small pseudo-band gap value of 1.0 eV and so may be a semiconductor. When checking the PDOS intensity at the Fermi surface of Ag atoms, a weak metallic character can be seen. The distortion mechanism becomes less effective to reduce the total orbital energy both in SnO2 and in Ag2SnO3 and as a result the bond lengths of Sn–O are intended to be isotropy.  相似文献   

8.
The undoped and Mg-doped ZnO ceramics have been successfully synthesized using the conventional solid state sintering method. The doping effect of MgO content on the structural properties of ZnO/MgO composites has been investigated by X-ray diffraction (XRD) and Raman spectroscopy. The XRD patterns reveal that all the samples are polycrystalline and have a prominent hexagonal crystalline structure with (002) and (101) as preferred growth directions. The formation of the hexagonal ZnMgO alloy phase and the segregation of MgO-cubic phase took place for an MgO composition x  20 wt%. This finding is in good agreement with the Raman spectroscopy measurements which prove the existence of multiple-order Raman peaks originating from ZnO-like and MgO phonons. The band gap energy and the carrier concentration of ZnO pellets were found to be dependent upon the Mg doping whose values vary from 3.287 to 3.827 eV and from 1.6 × 1017 to 5.2 × 1020 cm−3, respectively.  相似文献   

9.
《Solid State Sciences》2007,9(8):718-721
In recent years the dilute magnetic semiconductors have received much attention due to the complementary properties of semiconductor and ferromagnetic behaviour. Zn1−xMnxO thin films have been synthesized by chemical spray pyrolysis at a substrate temperature of 400 °C with different manganese compositions that vary in the range, 0.0  x  0.25, on Corning 7059 glass substrates. The X-ray diffraction studies revealed that all the films were strongly oriented along the (002) orientation corresponding to the hexagonal wurtzite structure. The crystalline quality of the layers was found to decrease with the increase of x, however, no structural changes were observed over the ‘Mn’ composition range investigated. The optical absorption studies revealed that the energy band gap of the films followed the Vegard's law. The optical band gap of the films prepared at x = 0.15 was found to be ∼3.35 eV. The photoluminescence characteristics of Zn1−xMnxO films showed an emission peak at around 390 nm with a broad band about 530 nm. The details of these results were reported and discussed.  相似文献   

10.
《Comptes Rendus Chimie》2008,11(9):1016-1022
Copper indium disulphide thin films were obtained by one-step deposition with two different techniques. Films are synthesised by electrodeposition using a single electrolytic bath and by r.f. sputtering using a single target. Deposition rates were about 75 nm/min and 2.5–6.5 nm/min, respectively. Electrodeposited films have rough and porous surfaces, with no preferential orientation. Smooth or particle-covered surfaces were observed for sputtered films with a highly (112)-oriented chalcopyrite structure. Absorption coefficients calculated from transmittance spectra have high values in visible range. Electrodeposited samples present higher absorption coefficients on a larger wavelength range. A relationship between morphology and optical properties was found; absorption coefficients increase with porosity and roughness of the films. Band gap values of about 1.3 eV for electrodeposited and 1.5 eV for sputtered thin films were calculated.  相似文献   

11.
Ab initio quantum chemical modelling (GGA, CASTEP and B3LYP, CRYSTAL03) is used to predict differences in electronic structure between the (1 0 0) surface and bulk of pyrite. Experimental X-ray photoelectron spectroscopic (XPS) data for the S 2p core lines show the presence of two types of S surface states: surface S2− monomers at a S 2p3/2 binding energy (BE) of 161.2 eV, and (S–S)2− surface dimer states at a S 2p3/2 BE of 162.0 eV, compared to the S 2p3/2 BE of bulk pyrite at 162.7 eV. The Fe 2p surface XPS displays several multiplets (implying high spin configuration) at higher BE than the bulk Fe 2p signal, which can be ascribed to surface state contributions. The quantum chemical simulation predicts an S 2p core level shift of 0.69 eV between the S bulk and S surface dimers, in good agreement with the 0.6 eV found in XPS measurements. A Mulliken population analysis confirms the conjectured charge distribution on the surface, which leads to the two different S surface states, as well as the surface high spin configuration responsible for the high BE Fe multiplets. Evidence for surface Fe2+ and Fe3+ surface states can be seen in the Fe projected valence band density of states, confirming the interpretation of the photoemission spectra.  相似文献   

12.
Donor–acceptor type (DA-type) polymeric photovoltaic material with a dicarboxylic imide-substituted benzene (phthalimide) derivative as electron-withdrawing units, poly[4,4′-didodecyl-2,2′-bithiophene-co-5,5′-(3,6-bis(thieno-2-yl)-N-octyl-phthalimide] (PDBTTPT), was synthesized by a Stille coupling reaction. It had an optical band gap of 1.96 V and a relatively low HOMO energy level of ?5.34 eV in spite of it being a thiophene-based polymer. Photovoltaic devices with PDBTTPT/PC71BM active layers were fabricated under a variety of conditions for optimizing device performance. PDBTTPT exhibited the best power conversion efficiency (PCE) of 1.5% in the device where 80 wt.% of the PC71BM was contained in the active layer (PDBTTPT:PC71BM = 1:4, w/w) and which was pre-annealed at 120 °C for 10 min. In addition, a device which was pre-annealed at 140 °C for 10 min and a device which was post-annealed at 120 °C for 10 min showed analogous PCE values of 1.5% as well, although small differences were exhibited between various parameters, such as VOC, JSC, and FF.  相似文献   

13.
The stability, structural parameters, elastic constants, electronic and optical properties of perovskites CsCaH3 and RbCaH3 were investigated by the density functional theory. The calculated lattice parameters are in agreement with previous calculation and experimental data. The energy band structures, density of states, born-effective-charge and Mulliken charge population were obtained. The perovskites CsCaH3 and RbCaH3 present a direct band gap of 3.15 eV and 3.27 eV at equilibrium. The top of the valence bands reflects the s electronic character for both structures. Furthermore, the absorption spectrum, refractive index, extinction coefficient, reflectivity, energy-loss spectrum, and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. The static dielectric constant and refractive index are indeed, inverse proportional to the direct band gap.  相似文献   

14.
The electronic structures of several highly electron-rich 2,7-dimethoxynaphthalene peri-dichalcogenides were evaluated using optical and electrochemical methods, as well as by DFT calculations. Charge transfer complexes were formed with tetracyanoquinodimethane and resulted in absorption features that span from 300 nm to 1600 nm and HOMO–LUMO energy gaps as low as 0.8 eV.  相似文献   

15.
The local and electronic structure of nitrogen-related defects in thin film of InN (0 0 0 1) has been studied using synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy. Several defect levels within the band gap and the conduction band of InN were clearly resolved in XANES spectra around the nitrogen K-edge. Theoretical analysis of XANES data includes advanced “ab initio” simulations: self-consistent full multiple scattering calculations using muffin-tin approximation, non-muffin-tin finite difference approach to study the influence of non-muffin-tin effects on XANES shape as well as advanced local density approximation scheme for optimization of initial geometry around nitrogen defects. Theoretical analysis of XANES data allows to attribute the level observed at 1.7 eV above the conduction band mimimum to antisite nitrogen and a sharp resonance at 3.2 eV above the conduction band minimum to molecular nitrogen.  相似文献   

16.
Optical transmittance in the range from 200 nm to 1100 nm is measured for fresh and γ-irradiated thermally evaporated chalcogenide films of GeSe3, Sb2Se3, ZnSe, (GeSe3)80(Sb2Se3)20 and (GeSe3)70(Sb2Se3)10(ZnSe)20. The effect of ZnSe incorporation with both GeSe3, Sb2Se3 results in amorphous γ-radiation sensitive (GeSe3)70(Sb2Se3)10(ZnSe)20 composition as obtained from the estimated optical parameters. Optical energy gap, Eg, for (GeSe3)70(Sb2Se3)10(ZnSe)20 film shows a noticeable decrease from 1.81 eV at 0 kGy to 1.52 eV at 690 kGy and conversely the corresponding band tail width, Ee, increases from 0.123 eV at 0 kGy to 0.138 eV at 690 kGy. By contrast, the estimated values of Eg and Ee for (GeSe3)80(Sb2Se3)20 compositions, show no change with different γ-irradiation doses in the same range. The obtained results could be explained in terms of the band edge shift into the energy gap due to either the formation of localized states at the edges or weakening in the composition cohesive energy as reformation of new weaker bonds appear.  相似文献   

17.
CdS thin films have been deposited by dip technique using succinic acid as a complexing agent. The structural characterizations of films have been studied by X-ray diffraction. X-ray diffraction pattern prove crystallinity of the deposited films that crystallize in the cubic phase of CdS. The films show high absorption and band gap value which were found to be 2.58 eV. The specific conductivity of the film was found to be in the order of 10?7 cm)?1.  相似文献   

18.
Extreme ultraviolet (EUV) spectroscopy was recorded on microwave discharges of helium with 2% hydrogen. Novel emission lines were observed with energies of q·13.6 eV where q=1,2,3,4,6,7,8,9, or 11 or these lines inelastically scattered by helium atoms wherein 21.2 eV was absorbed in the excitation of He (1s2) to He (1s12p1). These lines were identified as hydrogen transitions to electronic energy levels below the ‘ground’ state corresponding to fractional quantum numbers. Significant line broadening corresponding to an average hydrogen atom temperature of 33–38 eV was observed for helium–hydrogen discharge plasmas; whereas pure hydrogen showed no excessive broadening corresponding to an average hydrogen atom temperature of ≈3 eV. Since a significant increase in H temperature was observed with helium–hydrogen discharge plasmas, and energetic hydrino lines were observed at short wavelengths in the corresponding microwave plasmas that required a very significant reaction rate due to low photon detection efficiency in this region, the power balance was measured on the helium–hydrogen microwave plasmas. With a microwave input power of 30 W, the thermal output power was measured to be at least 300 W corresponding to a reactor temperature rise from room temperature to 900 °C within 90 s, a power density of 30 MW/m3, and an energy balance of about −4×105 kJ/mol H2 compared to the enthalpy of combustion of hydrogen of −241.8 kJ/mol H2.  相似文献   

19.
In this communication, we report on the formation of calcium hexahydroxodizincate dehydrate, CaZn2(OH)6·2H2O (CZO) powders under microwave-hydrothermal (MH) conditions. These powders were analyzed by X-ray diffraction (XRD), Field-emission gum scanning electron microscopy (FEG-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns confirmed that the pure CZO phase was obtained after MH processing performed at 130 °C for 2 h. FEG-SEM micrographs indicated that the morphological modifications as well as the growth of CZO microparticles are governed by Ostwald-ripening and coalescence mechanisms. UV-vis spectra showed that this material have an indirect optical band gap. The pure CZO powders exhibited an yellow PL emission when excited by 350 nm wavelength at room temperature.  相似文献   

20.
Visible light active hydrogen modified n-type titanium oxide (HM-n-TiO2) thin films were synthesized by thermal oxidation of Ti metal sheet (Alfa Co. 0.25 mm thick) in an electric oven followed by incorporation of hydrogen electrochemically under cathodic polarization at ?1.6 V vs Pt. The photoresponse of the HM-n-TiO2 was evaluated by measuring the rate of water splitting reaction to hydrogen and oxygen in terms of photocurrent density, Jp. The optimized electric oven-made n-TiO2 and HM-n-TiO2 photoelectrodes showed photocurrent densities of 0.2 mA cm?2 and 1.60 mA cm?2, respectively, at a measured potential of ?0.4 V vs Pt at illumination intensity of 100 mW cm?2 from a 150 W xenon lamp. This indicated an eightfold increase in photocurrent density for HM-n-TiO2 compared to oven-made n-TiO2 at the same measured electrode potential. The band-gap energy of HM-n-TiO2 was found to be 2.7 eV compared to 2.82 eV for electric oven-made n-TiO2 and a mid-gap band at 1.67 eV above the valence band was also observed. The HM-n-TiO2 thin film photoelectrodes were characterized using photocurrent density under monochromatic light illumination and UV–Vis spectral measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号