首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grain boundary lead inclusions formed by ion implantation of mazed bicrystal aluminum films have been investigated by transmission electron microscopy. The vapor-grown bicrystal films contained mainly 90°(110) tilt boundaries with fixed misorientation but variable inclination, as well as some growth twins with 70.5°(110) symmetrical tilt boundaries and a few small-angle boundaries. It was found that the shape, size and orientation of the inclusions in the grain boundaries depend on the orientation of the aluminum grain boundary plane. Inclusions at 90°(110) tilt boundaries were invariably sharply faceted toward one aluminum grain and more rounded toward the other grain. The faceted side was a section of the cuboctahedral equilibrium shape of bulk lead inclusions in parallel topotaxy with the aluminum matrix. The rounded side, where the aluminum grain was rotated by 90° with respect to the lead lattice, approximated a spherical cap. At specific low-energy segments of the grain boundary where a (100) plane in grain 1 meets an (011) plane in grain 2, only two of several possible shapes were observed. One of these was preferred in as-implanted samples while both types were found after melting and re-solidification of the lend inclusions. The observations are discussed in terms of a modified Wulff construction.  相似文献   

2.
The effects of the hydrogen concentration, crystal orientation and grain size on the mechanical properties of an α-Fe bicrystal with symmetric tilt grain boundaries under tensile loading are investigated by molecular dynamics simulation. The results indicate that regardless of crystal orientation, the yield strength of bicrystal α-Fe decreases with the increase of hydrogen concentration. Hydrogen atoms have no influence on the primary dislocation (or twin) nucleation mechanism, but rather influence their multiplication process. The results also show that the degree of hydrogen embrittlement is obviously dependent on the misorientation angle, but it is almost independent of the grain size.  相似文献   

3.
In this study, we employ a nucleation additive 4-octylbenzoic acid (OBA) with an optimized solvent evaporation method to regulate crystal orientation and grain width of small-molecule organic semiconductors. When 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) was utilized as a benchmark material to mix with the additive, a self-assembled OBA interfacial layer was formed and promoted uniform deposition of nucleation seeds. As a result, the TIPS pentacene/OBA blend crystalline film exhibited crystal alignment in long range order, attributing to a 11-fold reduction of the crystal misorientation angle and a 4-fold increase of the grain width. We further discussed the important correlation between the effective hole mobility, grain boundaries, grain width and length, and nucleation sites. Organic thin film transistors were fabricated to test charge transport, yielding a hole mobility of up to 0.17 cm2/V. This work provides a new pathway to modulate the nucleation and crystallization events of organic semiconductors, and can potentially be applied to optimize the thin film morphology and electrical performance of organic semiconducting materials in general.  相似文献   

4.
Microstructure variation of FePt thin film upon annealing at elevated temperatures was investigated by transmission electron microscopy (TEM). A special shape aperture was employed to observe the ordered L10 phase in the dark-field TEM images. With increasing the annealing temperature, crystal grains formed clusters with gathering of neighboring grains, and crystal grain growth proceeded within the cluster. L10 ordered crystal grains were preferentially formed near the grain boundaries, and their sizes grew with increasing the annealing temperature.  相似文献   

5.
When a single-phase alloy solidifies in a low-undercooling range or above a critical undercooling, grain-refined structures are obtained. Taking Ni75Pd25 alloy as an example, the microscopic orientation of the refined grains was investigated by electron backscattered diffraction technology. It is revealed that the refined grains at low undercooling are completely randomly distributed. In the refined structure at high undercooling, certain grain boundaries with misorientation angles less than 5° can be observed, while most of the grain boundaries have large misorientation angles. The inverse pole figure indicates that the refined grains at high undercooling have a textured crystallographic orientation. The fact that twins exist in the refined structure at high undercooling and the dendritic substructure arms exhibit no misorientation supports such an argument that the grain refinement at high undercooling results from the recrystallization of the solidification dendrites.  相似文献   

6.
Sputtered tape media of a CoPtCr–SiO2 magnetic layer with a Ru underlayer was fabricated on a thin Aramid film by a facing targets sputtering (FTS) system at room temperature with no cooling. Transition electron microscope (TEM) images show columnar epitaxial growth of hcp-CoPtCr(1 0 0) plane on hcp-Ru(1 0 0). Average grain diameter of 10.2 nm with dispersion of 20.2% was obtained from TEM images. Enrichment of Co and Pt inside grains and segregation of Cr and Si to boundary were confirmed by point energy dispersive spectroscopy (EDS) measurements. Playback performance test on sputtered sample indicated that SNR is higher and PW50 value is lower than that of commercial coated tapes. These good playback properties could come from fine and isolated grain structure of magnetic layer of sputtered sample, as observed by TEM.  相似文献   

7.
This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid–solid–solid multi-phase transformation by coupling the liquid–solid phase transformation model with the solid–solid phase transformation model. Taking an Fe–C alloy as an example, the continuous evolution of a multi-phase transformation is simulated by using this new model. In addition, the growth of grains affected by the grain orientation of the parent phase(generated in liquid–solid phase transformation) in the solid–solid phase transformation is studied. The results show that the morphology of ferrite grains which nucleate at the boundaries of the austenite grains is influenced by the orientation of the parent austenite grains. The growth rate of ferrite grains which nucleate at small-angle austenite grain boundaries is faster than those that nucleate at large-angle austenite grain boundaries. The difference of the growth rate of ferrites grains in different parent phase that nucleate at large-angle austenite grain boundaries, on both sides of the boundaries, is greater than that of ferrites nucleating at small-angle austenite grain boundaries.  相似文献   

8.
The ultrastructure of clam (Meretrix lusoria) was investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction analyzer (XRD) combining with in situ texture decalcified technique and the micro-hardness of clam was determined, in order to understand the spatial relationship between the mineral phase and organic matrix and further explain the correlation between the property and structure. The results showed that hierarchical fabrication is the major structure character of this mollusc shell. There is specific braided structure forming from domains composed of needle-like structure made up of the single crystal of aragonite. High magnification TEM image of clam indicates the intracrystal region of the aragonite single crystal is made up of subgrain phase and some amorphous substance. There are various crystal grain growth preferential orientations in the different growth direction of the shell. An amount of organic microtubule distribute evenly in the base of calcium carbonate as reinforcement phase. The mechanical property of this natural biological composite is better than other aragonite layer of mollusc shells and pearls according to the data of micro-hardness testing. The braided structure and organic microtubule reinforcement phase are responsible for its high mechanical performance. The stereo hierarchical fabrication of clam was elucidated for the first time.  相似文献   

9.
The grain structure of multisilicon crystals are investigated by scanning electron microscopy and electron backscatter diffraction. It is found that the contrast of an image obtained by scanning polished multisilicon surfaces in the mode of backscattered electrons by electron-probe microanalysis is caused by the fact that the contrasting grains on the test site of the surface belong to different crystallographic orientations. It is revealed that high-angle grain boundaries are areas where the contrast varies, whereas small-angle boundaries are not observed on the polished surfaces. Consequently, the degree of contrast of the image obtained in this scan mode can be used to qualitatively assess the degree of misorientation of neighboring grains.  相似文献   

10.
Cold plastic deformation produces misorientations inside the crystal grains, and the distribution of the misorientation is quite crucial to understand the deformation behavior of the metals or alloys. The misorientation manifestations in chemical etching contrast are investigated in this study in the case of cold-deformed iron. The chemical etching is performed by using nital, while the crystal orientation is determined by electron backscatter diffraction (EBSD). The correlation between the chemical etching contrast and crystal orientation have been studied in both cold-deformed and undeformed iron. The results clearly show that the chemical etching contrast strongly reflects the crystallographic orientation. The gradual change in chemical etching contrast inside the individual deformed grains gives information of both the misorientation and local plastic strain within the grains. This method can provide an easy and alternative way to qualitatively understand the misorientation and local plastic strain distributions in the microstructures.  相似文献   

11.
Since the early 19th century, the skeletons of calcareous sponges (Porifera: Calcarea) with their mineralized spicules have been investigated for their morphologies, structures, and mineralogical and organic compositions. These biomineral spicules, up to about 10 mm in size, with one to four rays called actines, have various specific shapes and consist mainly of magnesium-calcite: in only one case has an additional phase of stabilized amorphous CaCO3 (ACC) been discovered. The spicules are invariably covered by a thin organic sheath and display a number of intriguing properties. Despite their complex morphologies and rounded surfaces without flat crystal faces they behave largely as single crystal individuals of calcite, and to some degree crystallographic orientation is related to morphology. Despite their single-crystalline nature, most spicules show nearly isotropic fracture behaviour, not typical for calcite crystals, indicating enhanced fracture resistance. These unusual morphological and mechanical properties are the result of their mechanism of growth. Each spicule is formed by specialized cells (sclerocytes) that supply mineral ions or particles associated by organic macromolecules to extracellular cavities, where assembly and crystallization in alignment with an initial seed crystal (nucleus) takes place. As a result of discontinuous mineral deposition, cross-sections of larger spicules display concentric layering that mantles a central calcitic rod. On a smaller scale, the entire spicule displays a ‘nano-cluster’ structure with crystallographically aligned and putatively semicoherent crystal domains as well as a dispersed organic matrix intercalated between domain boundaries. This ultrastructure dissipates mechanical stress and deflects propagating fractures. Additionally, this nano-cluster construction, probably induced by intercalated organic substances, enables the formation of complex crystal morphologies independent of crystal faces. In this review, the current knowledge about the structure, composition, and formation of calcareous sponge spicules is summarised and discussed. Comparisons of calcareous sponge spicules with the amorphous silica spicules of sponges of the classes Hexactinellida and Demospongiae, as well as with calcitic skeletal elements of echinoderms are drawn. Despite the variety of poriferan spicule mineralogy and the distant phylogenetic relationship between sponges and echinoderms, all of these biominerals share similarities regarding their nano-scale construction. Furthermore, echinoderm skeletal elements resemble calcareous sponge spicules in that they represent magnesium-bearing calcite single-crystals with extremely complex morphologies.  相似文献   

12.
陈成  陈铮  张静  杨涛 《物理学报》2012,61(10):108103-108103
采用晶体相场模型研究了异质外延过程中失配应变与应力弛豫对外延层界面形态演化的影响, 并对由衬底倾角引起的外延层晶向倾侧进行了分析.研究结果表明: 在有一定倾角的衬底晶体上进行外延生长时,若衬底和外延层之间失配度较大 (ε>0.08),外延层中弹性畸变能会以失配位错的形式释放, 最终薄膜以稳定的流动台阶形式生长且外延层的晶向倾角与衬底倾角呈近似线性关系. 而当衬底和外延层之间失配度较小(ε<0.04)不足以形成失配位错时, 外延层中弹性畸变能会以表面能的形式释放,最终使薄膜以岛状形态生长. 在高过冷度条件下,衬底倾角和失配度较大时,衬底和外延层之间会形成由大量位错规则排列而成的小角度晶界从而显著改变外延层的生长位向.  相似文献   

13.
14.
Antiphase disorder in metal organic vapour phase epitaxy grown GaAs/(100)Ge heterostructures has been studied both in as-grown materials and in GaAs solar cells by chemical etching, transmission electron microscopy, and cathodoluminescence. All the samples are single domains at the surface due to the self-annihilation of antiphase domains whose size decreases as the misorientation angle increases. Completely antiphase domain-free epitaxy has been achieved for substrate miscuts greater than 3 degrees off towards [111]. A reversal in sublattice location has been found in the GaAs layers varying the misorientation angle and the growth temperature. A model to explain this result has been proposed based on the role of surface steps in the nucleation process. Strong interaction between antiphase boundaries and misfit dislocations has been found in all the heterostructures. In solar cells antiphase domains have been observed in high densities in the initial layer of GaAs deposited on Ge. The successful realisation of high efficiency solar cells is due to the overgrowth of these domains by single phase material over most of the wafer area.  相似文献   

15.
D. Catoor 《哲学杂志》2013,93(16):2154-2185
In polycrystalline materials that fail by transgranular cleavage, it is known that crystallographic misorientation of preferred fracture planes across grain boundaries can provide crack growth resistance; despite this, the micromechanisms associated with crack transmission across grain boundaries and their role in determining the overall fracture resistance are not well understood. Recent studies on diverse structural materials such as steels, aluminum alloys and intermetallics have shown a correlation between fracture resistance and the twist component of grain misorientation. However, the lack of control over the degree and type of misorientation in experimental studies, combined with a dearth of analytical and computational investigations that fully account for the three-dimensional nature of the problem, have precluded a systematic analysis of this phenomenon. In this study, this phenomenon was investigated through in situ crack propagation experiments across grain boundaries of controlled twist misorientation in zinc bicrystals. Extrinsic toughening mechanisms that activate upon crack stagnation at the grain boundary deter further crack propagation. The mechanical response and crack growth behavior were observed to be dependent on the twist angle, and several accommodation mechanisms such as twinning, strain localization and slip band blocking contribute to fracture resistance by competing with crack propagation. Three-dimensional finite element analyses incorporating crystal plasticity were performed on a stagnant crack at the grain boundary that provide insight into crack-tip stress and strain fields in the second grain. These analyses qualitatively capture the overall trends in mechanical response as well as strain localization around stagnant crack-tips.  相似文献   

16.
A new method is described for data-logging large amounts of grain boundary misorientation information from channelling patterns in the scanning electron microscope (SEM). The method relies on producing specimens where the grain size is larger than the specimen thickness and where the grain boundary planes are perpendicular to the specimen plane (the so-called columnar structure). Results for grain growth in pure aluminium at 460 and 500°C are presented. There is an increase in the proportion of low angle boundaries at the expense of high angle boundaries during growth times of up to a few hours. The reasons are thought to be partly connected with lower low angle boundary mobility compared with high angle boundaries. However, the growth kinetics appear to be normal over the entire growth time range.  相似文献   

17.
The morphology and microstructure of all-epitaxial (Bi,La)4Ti3O12/Pb(Zr0.4Ti0.6)O3/(Bi,La)4Ti3O12 (BLT/PZT/BLT) tri-layered ferroelectric films, grown on (011)-oriented SrTiO3 (STO) substrates by pulsed laser deposition, are investigated by transmission electron microscopy (TEM). X-ray diffraction and electron diffraction patterns demonstrate that the epitaxial relationship between BLT, PZT and STO can be described as ; . Cross-sectional TEM images show that the growth rate of BLT is nearly two times that for PZT at the same growth conditions, and 90° ferroelectric domain boundaries lying on {110} planes are observed in the PZT layer. The 90° ferroelectric domains in the PZT layer extend up to 600 nm in length. Long domains penetrate into the neighboring columnar grain through the columnar grain boundary, whereas others are nucleating at the columnar grain boundaries. The roughness of the PZT/BLT interfaces appears to depend on the viewing direction, i.e., it is different for different azimuthal directions. Planar TEM investigations show that the grains in the top BLT layer have a rod-like morphology, preferentially growing along the [110]BLT direction. The grain width is rather constant at about 90 nm, whereas the length of the grains varies from 150 to 625 nm. These morphological details point to the important role the crystal anisotropy of BLT plays for the growth and structure of the tri-layered films. PACS 81.15-z; 68.37.Lp; 77.84.-s  相似文献   

18.
B. Syed  D. Catoor  R. Mishra 《哲学杂志》2013,93(12):1499-1522
Magnesium bicrystals were grown with symmetric and asymmetric tilt boundaries about the [10–10] axis using the vertical Bridgman technique. Isothermal constant load tensile tests were conducted on these bicrystals in the temperature range 300–500°C and relative displacements of the two grains were measured to obtain an appreciation for grain boundary motion characteristics. Coupled grain boundary motion was noted in almost all cases with the degree of tangential motion versus migration changing with tilt misorientation, temperature and applied stress. Specifically, within the family of symmetric bicrystals evaluated, a minimum in grain boundary displacement in the specimen plane was observed at a tilt misorientation of 20°. In specific stress/temperature regimes, rigid body sliding was observed for the particular case of a 35° asymmetric tilt misorientation. The ease of basal and prism slip in magnesium at the temperatures considered and the consequential impingement of intragranular dislocations on the bicrystal boundary and their decomposition and motion along the boundary are thought to play an important role in the observed coupled motion of these tilt boundaries.  相似文献   

19.
A new method using Large Angle Convergent Beam Electron Diffraction (LACBED) patterns is proposed to measure accurately the grain boundary misorientation. The LACBED patterns which are obtained with a defocused convergent electron beam having a convergence semi-angle in the range 1 to 5o contain very sharp deficiency lines. Due to the good quality of the LACBED patterns, these sharp deficiency lines can be used to measure with great accuracy the grain boundary misorientation. In addition, since the LACBED method is a defocus mode method, the patterns contain at the same time information on the reciprocal space (the deficiency lines typical of the crystal orientation of the two grains on each side of the grain boundary) and on the real space (the image of the grain boundary). We describe a method which allows the identification of the misorientation from these LACBED patterns. The main point to consider is the accuracy which is about 0.05o. It is much better than the one obtained from other conventional methods used to measure this misorientation.  相似文献   

20.
Tensile tests were conducted on 50 wt% Mo50 wt% Re alloys in both fully recrystallized and recovery heat-treated conditions at a low strain rate of 10?6 s?1 and room temperature in air. It was found that both material conditions exhibited predominantly cleavage fracture with significant intergranular secondary cracking, compared to the predominantly ductile fracture found in the alloys at a higher strain rate. Cracks were often initiated at grain boundary triple junctions at the low strain rate. Electron backscatter diffraction (EBSD) measurements revealed significantly high misorientation gradients (i.e. highly localized change in orientation) at grain boundaries, especially in the vicinity of some grain boundary triple junctions in the deformed alloys. Transmission electron microscopy (TEM) results verified the existence of significant misorientations near grain boundaries in these alloys. Stress-assisted dynamic embrittlement, possibly due to trace interstitials, was the possible cause of brittle fracture in the 50Mo–50Re alloys at the low strain rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号