首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The enzymes a-amylase, invertase and glucoamylase were immobilized on acid activated montmorillonite using two techniques, viz. adsorption and covalent binding, and their activities were tested in a batch and packed-bed reactor and were compared. The packed-bed reactor showed an improved performance for all immobilized enzymes, which was attributed to lowering of diffusional restrictions to mass transfer. Lower activity in case of batch reactor for immobilized invertase was due to a combined effect of loss of native conformation of enzyme on account of immobilization and mass transfer resistances due to improper diffusion of substrate to the active site of enzyme. For immobilized glucoamylase, the packed-bed reactor demonstrated exceptionally high activity that was very close to the free enzyme. Covalently bound glucoamylase showed higher activity than the free enzyme.  相似文献   

2.
Glucose isomerase was immobilized onto granular chicken bone (BIOBONE?) by adsorption. The amount of activity bound relative to an equal amount of free enzyme was 32?1%, with the estimated specific activity decreasing from ll.l?0.7 to 3.9?0.5 U/mg protein with immobilization. Compared with the free enzyme, immobilized glucose isomerase showed a threefold increase in theKm for fructose and a fivefold decrease in Vmax. High operating temperatures were possible (>55?C), but continuous use and long-term storage studies showed gradual losses of activity. Both the binding and the activity of the bone-immobilized enzyme were highly resistant to treatments with detergent, ethanol, and KC1. Studies to determine mass transfer limitation effects on immobilized glucose isomerase showed that these were insignificant for this system.  相似文献   

3.
The recombinant Escherichia coli gamma-glutamyltranspeptidase (EcGGT) was immobilized in Ca-alginate-kappa-carrageenan beads. Effects of alginate concentration, amount of loading enzyme, and bead size on the entrapped activity were investigated. Optimum alginate concentration for EcGGT immobilization was found to be 2% (w/v). Using a loading enzyme concentration of 1.5 mg/g alginate, maximum enzyme activity was observed. With increase in bead size from 1.9 to 3.1 mm, the immobilization efficiency was decreased significantly because of mass transfer resistance. Thermal stability of the free EcGGT was increased as a result of the immobilization. Ca-alginate-kappa-carrageenan-EcGGT beads were suitable for up to six repeated uses, losing only 45% of their initial activity. Upon 30 days of storage the preserved activity of free and immobilized enzyme were found as 4% and 68%, respectively. The synthesis of L: -theanine was performed in 50 mM Tris-HCl buffer (pH 10) containing 25 mM L: -glutamine, 40 mM ethylamine, and 1.5 mg EcGGT/g alginate at 40 degrees C for 12 h, and a conversion rate of 27% was achieved.  相似文献   

4.
Effects of radiation on frozen lactate dehydrogenase   总被引:1,自引:0,他引:1  
Results concerning the influence of 6-MeV electron beam irradiation, of 2.45-GHz, 565-W microwaves, and of the combined electron and microwave irradiation, at -21 degrees C and -196 degrees C, on lactate dehydrogenase activity are presented. The microwave-irradiated samples exhibited a non-linear behaviour (successive activation and inactivation of the enzyme molecules), suggesting the major influence of the non-thermal component of microwave radiation. The combined electron and microwave irradiation led to a decrease of activity similar to the one caused by electron beam irradiation, which seemed to prove that microwave influence was insignificant in the dose, power and time ranges used. The radiation target analysis of the enzymatic decrease due to electron irradiation indicated a very large aggregation of the enzyme molecules. Our data suggest that radiation target analysis is not suitable to measure the molecular mass of lactate dehydrogenase, when frozen enzyme suspensions are irradiated. The D2O-protected enzyme, when exposed to electron irradiation, showed an even larger aggregation according to radiation target analysis, while the microwave irradiation of the protected enzyme led to a similar, though lesser, non-linear behaviour of the frozen enzyme molecules.  相似文献   

5.
A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.  相似文献   

6.
不同介孔材料固定青霉素酰化酶的稳定性研究   总被引:9,自引:0,他引:9  
介孔材料由于具有在2~30nm之间可调的纳米级规则孔道、大比表面积和强吸附性能而成为固定化酶的优良载体.将酶固定于介孔材料的孔道中制备成的固定化酶与溶液酶相比,有易于与产物分离,并可回收和反复使用,可降低生产成本,减少酶的自水解和保持酶的活性.青霉素酰化酶(Penicillin acylase,PGA,EC.3.5.1.11)又称为青霉素酰胺酶或青霉素氨基水解酶,该酶属于球蛋白,分子量较大,由2个亚基组成:分子量为19500的含有侧链结合位点的亚基和分子量为60000的含有催化位点的亚基.  相似文献   

7.
RNase (ribonuclease) mapping by nucleobase-specific endonucleases combined with mass spectrometry (MS) is a powerful analytical method for characterizing ribonucleic acids such as transfer RNAs. Typical free solution enzymatic digestion of RNA samples results in a significant amount of RNase being present in the sample solution analyzed by MS. In some cases, the RNase can lead to contamination of the high performance liquid chromatography and MS instrumentation. Here we investigate and compare several different approaches for reducing or eliminating contaminating RNase from the digested RNA sample before LC-MS analysis. Approaches using immobilized RNases were found to be most effective, with no enzyme carryover into the digested sample detected. Among the various options for immobilized RNases, we show that carbodiimide-based reactions can be used to couple RNases to carboxylic acid-terminated magnetic beads. The immobilized enzymes retain biological activity, are re-usable, and do not interfere with subsequent LC-MS analysis of the expected RNase digestion products. The use of immobilized RNases provides a simple approach for eliminating enzyme contamination in mass spectrometry-based RNase mapping experiments.  相似文献   

8.
Circular dichroism (CD) was used to characterize the secondary structure of penicillin G acylase upon covalent immobilization on silica nanoparticles. Covalent immobilization was achieved by functionalizing the silica nanoparticles with glutardialdehyde and coupling to the free NH(2) groups of the enzyme (lysine and arginine side chains). The loading of the covalently bound enzyme was increased up to saturation, which was reached at 54.6 mg immobilized enzyme per g silica nanobeads. For structural characterization of the commercially available enzyme its exact molecular mass was determined by mass spectrometry in order to enable precise evaluation of the CD data. The fraction of secondary structure elements of the free and immobilized enzyme were estimated from the respective CD spectra using standard algorithms (CONTINLL, CDSSTR, SELCON3). The fractions obtained by the different algorithms for the free enzyme agreed well with one another and also with data from X-ray diffraction described in the literature. Interestingly, the secondary structure fractions found for the immobilized enzyme were very similar to the free enzyme and nearly constant over all experiments. These results indicate that even a loading of up to 55.8 mg/g (enzyme per silica nanoparticles) causes only slight structural changes. However, the specific activity determined by a kinetic assay decreased by around 60%, when increasing the loading from 14.9 to 55.8 mg/g. Because of the fact that we found no major changes in the secondary structure, diffusion limitation seems to be the main reason for the decline of the specific activity.  相似文献   

9.
To determine if compounds added during trichloroethylene (TCE) degradation could reduce the loss of enzyme activity or increase enzyme recovery, different compounds serving as energy and carbon sources, pH buffers, or free radical scavengers were tested. Formate and formic acid (reducing power and a carbon source), as well as ascorbic acid and citric acid (free radical scavengers) were added during TCE degradation at a concentration of 2 mM. A saturated solution of calcium carbonate was also tested to address pH concerns. In the presence of formate and methane, only calcium carbonate and formic acid had a beneficial effect on enzyme recovery. The calcium carbonate and formic acid both reduced the loss of enzyme activity and resulted in the highest levels of enzyme activity after recovery.  相似文献   

10.
An enzyme‐mediated synthetic approach is described for the preparation of molecularly imprinted polymer nanoparticles (MIP‐NPs) in aqueous media. Horseradish peroxidase (HRP) was used to initiate the polymerization of methacrylate or vinyl monomers and cross‐linkers by catalyzing the generation of free radicals. To prevent entrapment of the enzyme in the cross‐linked polymer, and to enable it to be reused, HRP was immobilized on a solid support. MIPs based on 4‐vinylpyridine and 1,4‐bis(acryloyl)piperazine for the recognition of 2,4‐dichlorophenoxyacetic acid (2,4‐D) and salicylic acid were synthesized in an aqueous medium. MIPs for the protein trypsin were also synthesized. MIP nanoparticles with sizes between 50 and 300 nm were obtained with good binding properties, a good imprinting effect, and high selectivity for the target molecule. The reusability of immobilized HRP for MIP synthesis was shown for several batches.  相似文献   

11.
HPD-750树脂是中极性大孔吸附树脂,生物相容性好,机械性能稳定,具有较大的比表面积,可用于固定化酶载体材料。本文以HPD-750大孔树脂为载体固定化果胶酶,研究各因素对固定化酶的影响,并采用正交试验对固定化条件进行优化。结果表明,当pH为4.0、固定化温度为45℃、固定化时间为4h、加酶量为0.16g/mL时,固定化酶活力可达5146U/mg。以HPD-750大孔树脂为载体材料制备的固定化酶相较于游离酶具有更好的酸碱稳定性和热稳定性。在循环使用10次后,酶活力依然保留80%以上;4℃储藏25d之后,其酶活力仍保留60%以上。与D311大孔树脂、聚丙烯酰胺和海藻酸钠微球制备的固定化酶相比,HPD-750大孔树脂固定化酶的活性、操作稳定性、机械稳定性和储存稳定性都较好。该结果说明,HPD-750大孔树脂可作为固定化酶较好的载体材料。  相似文献   

12.
Thermolysin was immobilized by radiation polymerization of hydroxyalkyl acrylate and tetradecaethylene glycol dimethacrylate monomers at low temperatures in the presence of the enzyme, and the degree of interaction of the enzyme with the polymer matrix was studied by measuring the thermal stability of the immobilized enzyme. The thermal stability was affected by the molecular structure of the monomer; the thermal stability of the immobilized enzyme from hydrophilic monofunctional monomers in the wet state was higher than that from hydrophobic bifunctional monomers. The thermal stability in polymers formed from hydroxy-alkyl acrylates decreased with an increase in the number of methylene units in the monomer, owing to a change of the state of the enzyme trapped in the porous polymer matrix. The enzyme molecule trapped in a hydrophilic porous polymer matrix appeared to be stabilized by interaction with the polymer chains.  相似文献   

13.
纳米花型酶-无机杂化固定化酶研究进展   总被引:1,自引:0,他引:1  
冯慧  韩娟  黄文睿  吴嘉聪  李媛媛  王蕾  王赟 《化学通报》2021,84(12):1263-1273
酶是一种绿色高效的生物催化剂,被广泛地应用于工业生产中,为了更好的提升游离酶的性能,酶固定化技术应运而生。然而,与游离酶相比,固定化酶活性下降以及传质受限一直是酶固定化技术亟待解决的关键问题。作为一种新型酶固定化技术,纳米花型酶-无机杂化固定化酶因具有高比表面积、高酶活性和高催化效率,且制备简单,绿色无污染受到广泛关注。本文综述了近年来纳米花型酶-无机杂化固定化酶的研究进展,根据纳米花型酶-无机杂化固定化酶的形成特点,将其分为单酶纳米花、双酶纳米花和负载型纳米花。阐述了纳米花型酶-无机杂化固定化酶的制备过程和形成机理并对纳米花型酶-无机杂化固定化酶在食品工业和检测领域的应用进展做出总结。最后,对纳米花型酶-无机杂化固定化酶的发展前景做出展望。  相似文献   

14.

A computer program for preliminary cost estimates of free and immobilized enzyme systems has been developed. The cost for the hydrolysis of lactose by β-galactosidase fromAspergillus oryzae has been calculated for a batch tank reactor, with free (BTRF) and immobilized (BTRI) enzymes, a continuously stirred tank reactor (CSTR) and a plug-flow tubular reactor (PFTR), considering the mass transfer behavior and deactivation of the enzyme.

Enzyme immobilization is economically feasible, compared with a system with free enzymes, despite a very high cost for the enzyme attachment. At a half-life time of 80 d, the PFTR gives the lowest cost (0.48 SEK/kg lactose), but the cost for the BTRI is just slightly higher (0.66 SEK/kg lactose) and still much lower than the BTRF (2.10 SEK/kg lactose).

  相似文献   

15.
New polymer/silica gel hybrid supports were prepared by coating high surface area of silica gel with modified acrylonitrile copolymer. The concentrations of the modifying agent (NaOH) and the modified polymer were varied. GOD was covalently immobilized on these hybrid supports and the relative activity and the amount of bound protein were determined. The highest relative activity and sufficient amount of bound protein of the immobilized GOD were achieved in 10% NaOH and 2% solution of modified acrylonitrile copolymer. The influence of glutaraldehyde concentration and the storage time on enzyme efficiency were examined. Glutaraldehyde concentration of 0.5% is optimal for the immobilized GOD. It was shown that the covalently bound enzyme (using 0.5% glutaraldehyde) had higher relative activity than the activity of the adsorbed enzyme. Covalently immobilized GOD with 0.5% glutaraldehyde was more stable for four months in comparison with the one immobilized on pure silica gel, hybrid support with 10% glutaraldehyde and the free enzyme. The effect of the pore size on the enzyme efficiency was studied on four types of silica gel with different pore size. Silica with large pores (CPC-Silica carrier, 375 A) presented higher relative activity than those with smaller pore size (Silica gel with 4, 40 and 100 A). The amount of bound protein was also reduced with decreasing the pore size. The effect of particle size was studied and it was found out that the smaller the particle size was, the greater the activity and the amount of immobilized enzyme were. The obtained results proved that these new polymer/silica gel hybrid supports were suitable for GOD immobilization.  相似文献   

16.
Aminoacylase (EC 3.5.1.14) was immobilized into DEAE-Sephadex A-25 by ion-exchange absorption for optical resolution of N-acyl-dl-alanine. The effects of pH, temperature, and Co2+ concentration on the activity of free and immobilized enzymes were in vestigated along with the operational and the thermal stability of the immobilized enzyme. The immobilized enzyme retained high catalytic activity. The optimum pH and temperature for the hydrolysis of N-acyl-l-alanine in the dl-isomer mixture were 8.0 and 65°C, respectively. Co2+ was an activator for the immobilized enzyme in a similarroleas for the free enzyme. Nosignificant loss of activity was observed for at least 300 h of continuous operation. The yield of l-alanine was about 70% of the theoretical yield. The immobilized aminoacylase column decayed over a very long period of operation, but could be completely reactivated by regeneration.  相似文献   

17.
A simple and rapid single-step method is presented to fabricate an enzyme reactor using trypsin immobilized on a macroporous polymer monolith. A reactor produced in a capillary format is ready to use within 1 h of preparation. The monomers making up the monolith, including N-acryloxysuccinimide for covalent immobilization of the enzyme, are mixed with trypsin and introduced into the column by capillary force for polymerization/immobilization. The enzyme activity from column-to-column is reproducible below 5% relative standard deviation (RSD), while the reactor is durable for at least 20 weeks when stored at room temperature. The apparent kinetic constants V(max) and K(m) are of value similar to those obtained by free trypsin in solution. Enzymatic digestion of proteins was shown to be feasible on a time-scale of seconds and submicromolar concentrations enabling peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.  相似文献   

18.
Methodology for the immobilization of enzymes onto mesoporous materials   总被引:1,自引:0,他引:1  
Cytochrome c and xylanase were adsorbed onto two mesoporous materials, SBA-15 (a pure silicate) and MSE (an organosilicate), with very similar physical properties but differing chemical compositions. A methodical order was developed whereby the influences of surface area, pore size, extent of order, particle size, surface potentials, isoelectric points, pH, and ionic strength on immobilization were explored. In silico studies of cytochrome c and xylanase were conducted before any immobilization experiments were carried out in order to select compatible materials and probe the interactions between the adsorbents and the mesoporous silicates. The stabilities of the mesoporous materials at different pH values and their isoelectric points and zeta potentials were determined. Electrostatic attraction dominated protein interactions with SBA-15, while weaker hydrophobic interactions are more prominent with MSE for both cytochrome c and xylanase. The ability of the immobilized protein/enzyme to withstand leaching was measured, and activity tests and thermostability experiments were conducted. Cytochrome c immobilized onto SBA-15 showed resistance to leaching and an enhanced activity compared to free protein. The immobilized cytochrome c was shown to have higher intrinsic activity but lower thermostability than free cytochrome c. From an extensive characterization of the surface properties of the silicates and proteins, we describe a systematic methodology for the adsorption of proteins onto mesoporous silicates. This approach can be utilized in the design of a solid support for any protein.  相似文献   

19.
A new method of immobilizing enzymes by ionizing radiation is described. The mixed aqueous solution of enzyme and polymerizing reagents were quickly frozen at about -70°C then were irradiated with 200 to 500 Krad by60Co γ ray. Irradiation was conducted aerobically under the low temperature. The enzyme was entraped in the resulting polymer. As the polymerizing reagent some water soluble polymers having vinyl bonds were also applicable. By this method an immobilized enzyme was prepared in bead, membrane, bag, or tube form having high enzymic activity. When the bead form was to be prepared, the mixture of enzyme and reagents were injected into precooled solvent such as n-hexane, toluene, or petroleum ether. the size of the bead was controlled freely from 10 μm to 1 cm in diameter. The surface of the bead had numerous small holes and the cross section of the bead showed a spongy structure. some acrylates were suitable for the immobilization of enzymes which required the corresponding metal ion as the essential substance. Microorganisms and multienzymes will be immobilized by this technique. This method is inexpensive, quick, simple, and reliable. Immobilized microbial cells can be sterilized by γ irradiation. Invertase was immobilized and the application test was conducted in an enzyme column.  相似文献   

20.
The immobilization of glucose oxidase on hydrolyzed nylon-6,6 was studied. Various spacers were introduced on the support before the coupling of the enzyme. Best results were obtained when the membrane was covered with denatured bovine serum albumin (BSA) before spacer coupling and immobilization of glucose oxidase (GOD). The influence of various factors (pH, ionic strength, etc.) on the activity of the free and immobilized enzyme was investigated. It was found that the behavior of the fixed glucose oxidase and the free enzyme is very similar. The covalently immobilized enzyme had a lifetime of around 2 months (50% of initial activity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号