首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The VDmax approach for substantiation of 25 kGy has been in use for more than 10 years. VDmax methods are included in ISO 11137-2:2006 and AAMI TIR33:2005. ISO Technical Specification, 13004, is under development that will include sterilization doses from 15 to 35 kGy.For substantiation of a sterilization dose for very low bioburden products, less than or equal to 0.3, values of VDmax have now been derived and tabulated for a sterilization dose of 12.5 kGy.Products have been encountered that have both low bioburden and a relatively low maximum dose. In several situations, existing tabulated VDmax values could not be effectively used; in one such situation, the average bioburden was too high to substantiate a 15 kGy sterilization dose and the use of a 17.5 kGy sterilization dose was not practicable due to the likelihood of exceeding the product's maximum acceptable dose. For this product, values of VDmax were derived and tabulated for substantiation of a 16.1 kGy sterilization dose.Values of VDmax have been derived and tabulated for the substantiation of sterilization doses linked to a sterility assurance level (SAL) of 10?3. To offer a potential alternative to aseptic processing, the notion of using an “aseptic processing equivalent dose”, 10?4 SAL, has been investigated along with the use of alternate model populations for calculation of VDmax values.  相似文献   

2.
EN ISO 11137 established regulations for setting or substantiating the dose for achieving the desired sterility assurance level.The validation studies can be designed in particular for different types of products. Each product needs distinct protocols for bioburden determination and sterility testing.The Microbiological Laboratory from Irradiation Processing Center (IRASM) deals with different types of products, mainly for the VDmax25 method. When it comes to microbiological evaluation the most challenging was cotton gauze. A special situation for establishing the sterilization validation method appears in cases of cotton packed in large quantities. The VDmax25 method cannot be applied for items with average bioburden more than 1000 CFU/pack, irrespective of the weight of the package. This is a method limitation and implies increased costs for the manufacturer when choosing other methods.For microbiological tests, culture condition should be selected in both cases of the bioburden and sterility testing. Details about choosing criteria are given.  相似文献   

3.
The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly (p<0.05) increased in all irradiated samples of the plant.  相似文献   

4.
Lotus seeds are nutraceutically valued natural plant produce, which succumbs to microbial contamination, predominantly to toxigenic moulds. Results of the present study revealed seed coat portion to harbor higher proportion of microbial load, particularly fungi than cotyledon portion. Among the mycotoxins analyzed, aflatoxins (B1, B2, G1 and G2) were below detectable limits, while the seeds were devoid of Ochratoxin-A (OTA). Application of different doses of electron beam and gamma irradiation (0, 2.5, 5, 7.5, 10, 15 and 30 kGy) for decontamination purpose revealed significant dose-dependent decrease in the fungal contaminants (P<0.05). However, the contaminant yeasts could survive up to 10 kGy dose, which could be completely eliminated at 15 kGy. From the results obtained, a dose range between 10 and 15 kGy is recommended for complete decontamination, as these doses have also been shown earlier to have minimal effects on nutritional and functional properties of lotus seeds.  相似文献   

5.
Lycium fruit, popular traditional Chinese medicine and food supplement generally is ingested uncooked, was exposed to several doses of gamma irradiation (0–14 kGy) to evaluate decontamination efficiency, changes in chemical composition, and changes in sensory characteristic. In this study, lycium fruit specimens contained microbial counts of 3.1×103–1.7×105 CFU/g and 14 kGy was sufficient for microbial decontamination. Before irradiation, the main microbe isolated from lycium fruit was identified as a strain of yeast, Cryptococcus laurentii. After 10 kGy of irradiation, a Gram-positive spore-forming bacterium, Bacillus cereus, was the only survivor. The first 90% reduction (LD90) of C. laurentii and B. cereus was approximately 0.6 and 6.5 kGy, respectively, the D10 doses of C. laurentii and B. cereus was approximately 0.6 and 1.7 kGy, respectively. After 14 kGy irradiation, except the vitamin C content, other chemical composition (e.g., crude protein, β-carotene, riboflavin, fructose, etc.) and the sensory characteristic of lycium fruit specimens did not have significant changes. In conclusion, 14 kGy is the optimal decontamination dose for lycium fruit for retention of its sensory quality and extension of shelf life.  相似文献   

6.
Fresh-cut Iceberg lettuce packaged in modified atmosphere packages and spinach in perforated film bags were irradiated with gamma rays at doses of 0, 1, 2, 3, and 4 kGy. After irradiation, the samples were stored for 14 days at 4 °C. O2 levels in the packages of fresh-cut Iceberg lettuce decreased and CO2 levels increased with increasing radiation dose, suggesting that irradiation increased respiration rates of lettuce. Tissue browning of irradiated cut lettuce was less severe than that of non-irradiated, probably due to the lower O2 levels in the packages. However, samples irradiated at 3 and 4 kGy had lower maximum force and more severe sogginess than the non-irradiated control. In addition, ascorbic acid content of irradiated lettuce was 22–40% lower than the non-irradiated samples after 14 days of storage. The visual appearance of spinach was not affected by irradiation even at a dose of 4 kGy. Consumer acceptance suggested that more people would dislike and would not buy spinach that was treated at 3 and 4 kGy as compared to the non-irradiated sample. Overall, irradiation at doses of 1 and 2 kGy may be employed to enhance microbial safety of fresh-cut Iceberg lettuce and spinach while maintaining quality.  相似文献   

7.
This study evaluated effect of gamma irradiation on survival of Salmonella Typhimurium and Staphylococcus aureus on lettuce and damage of cell envelope. S. Typhimurium and S. aureus were inoculated on red leaf lettuce, and they were irradiated at 0, 0.5, 1, 1.5, 2, 2.5, and 3 kGy, and the samples were then stored at 7 and 25 °C for 7 days. Survival of S. Typhimurium and S. aureus were enumerated on xylose lysine deoxycholate agar and Baird–Parker agar, respectively. D10 value (dose required to reduce 1 log CFU/leaf) was calculated, and kinetic parameters (maximum specific growth rate; μmax and lag phase duration; LPD) were calculated by the modified Gompertz model. In addition, cell envelope damage of the pathogens was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). D10 values were 0.35 and 0.33 kGy for S. Typhimurium and S. aureus, respectively. During storage at 7 °C, S. Typhimurium and S. aureus had significant (P<0.05) growth only on non-irradiated samples up to about 2.5 and 4 log CFU/leaf at 0.42 and 1.28 log CFU/leaf/day of μmax, respectively. At 25 °C, cell counts of S. Typhimurium and S. aureus on the samples irradiated at 0 and 0.5 kGy increased (P<0.05) up to 3–6 log CFU/leaf. The μmax of both pathogens were higher in 0 kGy (1.08–2.27 log CFU/leaf/day) and 0.5 kGy (0.58–0.92 log CFU/leaf/day), and LPDs ranged from 1.53 to 3.14 day. SEM and TEM observations showed that cells irradiated at 1.5 and 3 kGy showed disrupted cell membrane. These results indicate that gamma irradiation could be a useful decontamination technology to improve food safety of lettuce by destroying cells of S. Typhimurium and S. aureus.  相似文献   

8.
Radix W, a clear poly(methyl-methacrylate) (PMMA) dosimeter was developed with improved properties compared to the conventional clear PMMA dosimeter, Radix RN15. PMMA with a glass transition temperature (Tg) higher than 120 °C was selected making it possible to measure doses in a wide range of 1 to 150 kGy. Dose rates of 2.5–10 kGy/h were tested and did not affect significantly the dose response. The influence of irradiation temperature was reduced compared with Radix RN15.  相似文献   

9.
Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1?25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).  相似文献   

10.
The International and European standards for radiation sterilization require evidence of the effectiveness of a minimum sterilization dose of 25 kGy but do not provide detailed guidance on how this evidence can be generated. An approach, designated VDmax, has recently been described and computer evaluated to provide safe and unambiguous substantiation of a 25 kGy sterilization dose. The approach has been further developed into a practical method, which has been subjected to field evaluations at three manufacturing facilities which produce different types of medical devices. The three facilities each used a different overall evaluation strategy: Facility A used VDmax for quarterly dose audits; Facility B compared VDmax and Method 1 in side-by-side parallel experiments; and Facility C, a new facility at start-up, used VDmax for initial substantiation of 25 kGy and subsequent quarterly dose audits. A common element at all three facilities was the use of 10 product units for irradiation in the verification dose experiment.

The field evaluations of the VDmax method were successful at all three facilities; they included many different types of medical devices/product families with a wide range of average bioburden and sample item portion values used in the verification dose experiments. Overall, around 500 verification dose experiments were performed and no failures were observed. In the side-by-side parallel experiments, the outcomes of the VDmax experiments were consistent with the outcomes observed with Method 1.

The VDmax approach has been extended to sterilization doses >25 and <25 kGy; verification doses have been derived for sterilization doses of 15, 20, 30, and 35 kGy. Widespread application of the VDmax method for doses other than 25 kGy must await controlled field evaluations and the development of appropriate specifications/standards.  相似文献   


11.
In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0–40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities.  相似文献   

12.
In Thailand, white scar oyster (Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses (D10) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D10 values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 105 CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.  相似文献   

13.
Butyl rubber (IIR) is an isobutylene/isoprene copolymer and is provided with good properties including low permeability to gases, good thermal stability and high resistance to oxygen and ozone action, among others. It is well known that the major effect of ionizing radiations on butyl rubber is chain scission accompanied with a significant reduction in molar mass. This work aimed to study the effects of gamma radiation on the properties of butyl rubbers vulcanized by three different curing systems, such as, the ones based on sulfur, sulfur donor and phenolic resin to identify which curing system is the most stable under irradiation. The butyl rubber vulcanized by three different systems was gamma irradiated with doses of 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 kGy. Irradiated and non-irradiated samples were characterized by the following techniques: tensile, elongation and hardness. It was observed that doses higher than 150 kGy practically destroy the assessed properties for all butyl compounds, irrespective of the vulcanization system used; however compounds cured with phenolic resin showed a decrease in properties proportional to the dose.  相似文献   

14.
The aim of this study was to evaluate the gamma radiation effects on odor volatiles in oolong tea at doses of 0, 5, 10, 15 and 20 kGy. The volatile organic compounds were extracted by hydrodistillation and analyzed by GC/MS. The irradiation has a large influence on oolong tea odor profile, once it was identified 40% of new compounds after this process, the 5 kGy and 20 kGy were the doses that degraded more volatiles found naturally in this kind of tea and the dose of 10 kGy was the dose that formed more new compounds. Statistical difference was found between the 5 kGy and 15 kGy volatile profiles, however the sensorial analysis showed that the irradiation at dose up 20 kGy did not interfere on consumer perception.  相似文献   

15.
The purpose of this study was to evaluate microbial populations, Hunter's color values (L?, a?, b?) and the sensory quality of freeze-dried miyeokguk, Korean seaweed soup, in order to use it as space food. Microorganisms were not detected in non-irradiated freeze-dried miyeokguk within the detection limit of 1.00 log CFU/g. However, the microbial population in rehydrated miyeokguk was 7.01 log CFU/g after incubation at 35 °C for 48 h, indicating that freeze-dried miyeokguk was not sterilized by heat treatment during the preparation process. Bacteria in the freeze-dried miyeokguk were tentatively identified as Bacillus cereus, B. subtilis, Enterobacter hormaechei, and Ancinetobacter genomosp. using the 16S rDNA sequencing. In samples that were gamma-irradiated above 10 kGy, it was confirmed that all microorganisms were inactivated. Hunter's color values of the samples irradiated at doses less than 10 kGy were not significantly altered from their baseline appearance (p>0.05). Sensory evaluation showed that preference scores in all sensory properties decreased when freeze-dried miyeokguk was irradiated at doses greater than 10 kGy. Therefore, the results of this study suggest that gamma irradiation at 10 kGy is sufficient to sterilize freeze-dried miyeokguk without significant deterioration in the sensory quality, and thus, the freeze-dried and irradiated miyeokguk at 10 kGy fulfills the microbiological requirements as space food.  相似文献   

16.
The paper reports the operation of a new-design microbial fuel cell using compost leachate as a substrate, oxygen/electrodeposited MnOx cathode and a new-anode concept with graphite modified by an iron/sulfur solid chemical catalyst which almost eliminates the starting delay time and gives very high current and power densities, I ~ 25 A m 3 at Pmax ~ 12 W m 3 or I ~ 3.8 A m 2 at Pmax ~ 1.8 W m 2.  相似文献   

17.
The radiosensitivities of Escherichia coli and Staphylococcus aureus on poached chicken meal (PCM) and minced chicken substrate (MCS) were determined. Effect of irradiation (0, 1, 2 kGy) on total viable cells (TVC) of PCM components was determined under chilled (3–5 °C) storage (0, 9, 14, 21 days) and challenge testing of the bacterial isolates with irradiation (0, 2, 3 kGy) was also conducted on PCM under chilled storage (0,7, 14, 21, 28 days). Additionally, sensory evaluation of the PCM components was assessed with irradiation (0, 2, 3 kGy) during chilled storage (0, 7, 14, 21 days). D10 of E. coli on PCM and MCS were 0.18 and 0.25 kGy whiles those of S. aureus were 0.27 and 0.29 kGy, respectively. D10 values for PCM<MCS and values for S. aureus>E. coli. 2 kGy controlled TVC and extended the shelf life of meals to ⩾14 days but 3 kGy was required to eliminate E. coli and S. aureus. Sensory qualities of the meal were not affected by an irradiation dose of 3 kGy.  相似文献   

18.
Gamma-irradiation alone and in combination with refrigeration was tested consecutively for 3 years for extending the shelf life of pear. Matured green pears were irradiated in the dose range of 0.8–2.0 kGy and stored under ambient (temperature 25±2 °C, RH 70%) and refrigerated (temperature 3±1 °C, RH 80%) conditions. Dose range of 1.5–1.7 kGy extended the storage life of pear by 14 days under ambient conditions. Control unirradiated pears were almost fully ripe within 8 days, while as the pears irradiated in the dose range of 1.5–1.7 kGy were fully ripe within 22 days of ambient storage. Irradiation dose of 1.5–1.7 kGy significantly inhibited the decaying of pears upto 16 days of ambient storage. Irradiation in combination with refrigeration prevented the decaying of pears upto 45 days as against the 35% decay in unirradiated samples. Irradiation dose of 1.5–1.7 kGy also gave an extension of 8 and 4 days during additional ambient storage of the pears following 30 and 45 days of refrigeration, respectively.  相似文献   

19.
Colloidal silver nanoparticles were synthesized by γ-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40×10?4 and 1.84×10?3 M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a 60Co γ source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV–vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak λmax blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.  相似文献   

20.
The study is aimed at the optimization of gamma irradiation treatment of sun-dried apricots for quality maintenance and quarantine purposes. Sun-dried apricots pre-treated with potassium meta-bisulphite (KMS) at 2.5% w/v were procured from progressive apricot grower of district Kargil, Ladakh region of Jammu and Kashmir state. The sun-dried apricots were packed in 250 gauge polyethylene packs and gamma irradiated in the dose range 1.0–3.0 kGy. The gamma irradiated fruit including control was stored under ambient (15±2–25±2 °C, RH 70–80%) conditions and periodically evaluated for physico-chemical, sensory and microbial quality parameters. Radiation treatment at dose levels of 2.5 and 3.0 kGy proved significantly (p≤0.05) beneficial in retention of higher levels of β-carotene, ascorbic acid, total sugars and color values without impairing the taste as perceived by the sensory panel analysists. The above optimized doses retained the β-carotene content of sun-dried apricots to the extent of 71.2% and 72.6% compared to 63.9% in control samples after 18 months of storage. Irradiation treatment facilitated the release of residual sulfur dioxide in KMS pre-treated sun-dried apricots significantly (p≤0.05) below the prescribed limit for dried products. During storage, two-fold decrease in sulfur dioxide content was recorded in irradiated samples (3.0 kGy) as compared to 16.9% in control. The above optimized doses besides maintaining the higher overall acceptability of sun-dried apricots resulted in 5 log reductions in microbial load just after irradiation and 1.0 and 1.3 log reductions in yeast and mold and bacterial count after 18 months of ambient storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号