首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mushroom bodies are structures present in the insect brain described as centers for the neural basis of learning, memory, and other higher functions. Honeybees (Apis mellifera) are insects with a sophisticated system of spatial orientation and possess well-developed learning and memory capabilities, which are associated with neural and brain structures. Thus, the present study aimed to compare the mushroom bodies during post-embryonic development and in newly emerged males, workers, and queens using light and transmission electron microscopy to examine how differential morphological characteristics are established during development. Measurements of structures were also taken in several post-embryonic developmental phases in order to evaluate size differences during the process and in the adult organs. The results show that workers, queens, and males exhibit temporal and size differences during the post-embryonic development of mushroom bodies, probably as adaptations to differences in behavior complexity. The mushroom bodies of workers are precociously formed and are larger than those of queens and drones. Thus, workers have the largest mushroom bodies resulting from differential development during metamorphosis.  相似文献   

2.
This paper describes the flight muscles changes in relation to the age/function of the adult members of the colonies of two advanced species of eusocial bees: Apis mellifera (Apini) and Scaptotrigona postica (Meliponini). Here, are reported the results obtained through transmission electron microscopy studies, first describing a general overview of the flight muscle ultrastructure and second reporting on the ultrastructural changes that occur along the life stages/functions of workers, queens and males. The workers emerge with immature flight muscles, and the maturation takes about 20 days. In contrast, queens and males emerged with more advanced muscle differentiation, similar to workers after the 20 days of maturation. In both forager workers and laying queens, flight muscles showed signs of senescence, but not in sexually mature males. The differences among life phases, individual classes and species are discussed in relation to their functions in the colony.  相似文献   

3.
Scanning electron microscopy (SEM) methods were used for the first time to elucidate the external morphology of the European species of the genus Eulachnus (Hemiptera: Aphididae: Lachninae), a representative genus of the conifer-feeding aphids tribe Eulachnini. We examined and compared the external morphology of apterous and alate viviparous females from the parthenogenetic generation as well as oviparous females and alate males belonging to the sexual generation. FE-SEM images based on HMDS and cryo-SEM preparation techniques revealed better image quality than the CPD technique in regard to surface tension and morphological signs of cell deteriorations (i.e., existence of depressions, drying artifacts and membrane blebs). Three morphologically different species groups “agilis”, “brevipilosus” and “cembrae” were proposed due to the differences in head, antennae, legs and dorsal chaetotaxy as well as dorsal sclerotization. The most characteristic features and differences of representatives of these groups are presented and discussed.  相似文献   

4.

Background

During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of Coenobita clypeatus (Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase.

Results

The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that C. clypeatus has visual and mechanosensory skills that are comparable to those of marine Crustacea.

Conclusion

In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of C. clypeatus. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.  相似文献   

5.
Diatoms are unicellular algae that possess cell wall made of silica. These diatoms play a pivotal role in synthesis of variety of silica nanostructures and have adorning morphology in nature. In the present study, we have used field emission scanning electron microscopy (FE-SEM) to investigate their morphological features like pore size, shape, and porous pattern in various diatoms isolated from Kurichi and Sulur fresh water lakes, Coimbatore, Tamil Nadu, India. Diatoms were identified as Nitzschia sp., Cyclotella meneghiniana, Coscinodiscus sp. and Cyclotella atomus based on their morphological features. The arrangement of porous nanostructures in these diatoms have been characterized. The change in the nanostructures present in the diatoms have been correlated to the contamination of water bodies.  相似文献   

6.

Background

Insect neuropeptides are involved in diverse physiological functions and can be released as neurotransmitters or neuromodulators acting within the central nervous system, and as circulating neurohormones in insect hemolymph. The insect short neuropeptide F (sNPF) peptides, related to the vertebrate neuropeptide Y (NPY) peptides, have been implicated in the regulation of food intake and body size, and play a gonadotropic role in the ovaries of some insect species. Recently the sNPF peptides were localized in the brain of larval and adult Drosophila. However, the location of the sNPF receptor, a G protein-coupled receptor (GPCR), has not yet been investigated in brains of any adult insect. To elucidate the sites of action of the sNPF peptide(s), the sNPF receptor tissue expression and cellular localization were analyzed in queens of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera), an invasive social insect.

Results

In the queen brains and subesophageal ganglion about 164 cells distributed in distinctive cell clusters (C1-C9 and C12) or as individual cells (C10, C11) were immuno-positive for the sNPF receptor. Most of these neurons are located in or near important sensory neuropils including the mushroom bodies, the antennal lobes, the central complex, and in different parts of the protocerebrum, as well as in the subesophageal ganglion. The localization of the sNPF receptor broadly links the receptor signaling pathway with circuits regulating learning and feeding behaviors. In ovaries from mated queens, the detection of sNPF receptor signal at the posterior end of oocytes in mid-oogenesis stage suggests that the sNPF signaling pathway may regulate processes at the oocyte pole.

Conclusions

The analysis of sNPF receptor immunolocalization shows that the sNPF signaling cascade may be involved in diverse functions, and the sNPF peptide(s) may act in the brain as neurotransmitter(s) or neuromodulator(s), and in the ovaries as neurohormone(s). To our knowledge, this is the first report of the cellular localization of a sNPF receptor on the brain and ovaries of adult insects.  相似文献   

7.
8.
During Isoptera evolution, the caste of soldiers disappeared in some Apicotermitinae termites as in the Neotropical Ruptitermes. Paired dorsolateral structures located between the metathorax and abdomen of foraging workers of Ruptitermes were previously denominated dehiscent glands, and are responsible for releasing an adhesive secretion that immobilizes enemies, causing their death. In this study, we investigated the morphology of dehiscent organs of workers of Ruptitermes reconditus, Ruptitermes xanthochiton, and Ruptitermes pitan and also second instar larvae of R. reconditus using light, laser scanning confocal, and transmission electron microscopy. Additionally, we performed a preliminary protein analysis using SDS-PAGE to further characterize the secretion of Ruptitermes dehiscent organs. Our results showed that the dehiscent organs do not exhibit the typical characteristics of the exocrine glandular cells class I, II or III of insects, suggesting that they constitute a new type of defensive organ. Thus, the denomination dehiscent gland was not used but dehiscent organ. Dehiscent organs in larvae are formed by fat body cells. In workers, dehiscent organs are composed by compact masses of cells that accumulate a defensive secretion and are poor in organelles related to the production of secretion. Since the dehiscent organs are not glands, we hypothesize that the dehiscent organs originate from larval fat body. The defensive secretion may have been produced at younger developmental stages of worker or the defensive compounds were absorbed from food and accumulated in the worker fat body. Histochemical techniques and SDS-PAGE revealed that the secretion of Ruptitermes dehiscent organs is constituted mainly by a protein of high molecular weight (200 kDa). In conclusion, the dehiscent organs are extremely different from the exocrine glands of termites and other insects described until now. In fact, they seem to be a specialized fat body that is peculiar and exclusive of Ruptitermes termites.  相似文献   

9.
Biochemical studies revealed that the activity of some hydrolytic enzymes from the venom glands of honey bee Apis mellifera was higher in workers of 14 days of age than in those of 40 days. Among these enzymes, the highest activity was recorded for acid phosphatase, which was cytochemically detected throughout the length of the secretory filament and surrounding the canaliculi of the distal region of the reservoir. The acid phosphatase was considered to be a typical secretion product, since it was present in the cytoplasm as well as in the canaliculi of the secretory cells.  相似文献   

10.
Ovaries of newly emerged virgin queens, aged 1, 3, 5, and 10 days, were submitted to an atmosphere of CO2 for 1 min, and studied by transmission electron microscopy. Newly emerged control and experimental queens were kept caged during 15 days with six nurse workers (changed every 2 days) and fed with sugar candy and water ad libitum. For the ultrastructural studies, the ovaries were collected when the queens were 3, 5, 10, and 15 days old. The effect of the treatment on the ovary was mainly evaluated by cell death incidence and acid phosphatase detection. Neither the confinement nor CO2 treatment interfered with the pattern of queen ovarian development for up to 5 days; that is, no differences were observed in ovarian ultrastructure or acid phosphatase activity between control and treated queens. Beyond the age of 10 days, treated queens showed a lower rate of cell death than controls, but the positivity to acid phosphatase reaction remained similar in both. The protective effect of CO2 on cells, however, did not persist, and 15-day-old treated queens showed no differences compared to the controls in the rates of cell death or enzyme reactivity. In conclusion, treatment with CO2 did not significantly change the ultrastructure of ovarian cells, or acid phosphatase activity in them, during the caging time of the queens. From an applied perspective, the short-term imprisonment of newly emerged queens outside of the colony, as is done by beekeepers, does not seem to affect their performance in terms of future fertility, although the narcosis, as applied in this study, may negatively affect their long-term performance.  相似文献   

11.
AFM was used to evaluate topography and adhesion properties of dividing Gram-positive mycobacterium sp. strains JLS, KMS, and MCS. This research revealed that these three mycobacterium strains divided by budding, and the adhesion force of mother cells differed from their daughter (or budding) cells. At the early stage of division, the adhesion force of the mother cell was larger than that of newly formed daughter cell (10–30%); however, at the anaphase of division, the mother cell possessed smaller adhesion force compared with daughter cell (4–15%). According to the range of the adhesion force measured on the dividing (budding) mycobacterium JLS (M.JLS) cells, the schematic division (or budding) models were proposed, and these mycobacterium strains were found to follow well these division models. Altogether, AFM-based topography and adhesion force measurements at the nanoscale resolution may offer new insightful views that would further facilitate the understanding and elucidation of the biophysical behaviors during division (or budding) processes of microorganisms.  相似文献   

12.

Background

Members of the proteolipid protein family, including the four-transmembrane glycoprotein M6a, are involved in neuronal plasticity in mammals. Results from our group previously demonstrated that M6, the only proteolipid protein expressed in Drosophila, localizes to the cell membrane in follicle cells. M6 loss triggers female sterility, which suggests a role for M6 in follicular cell remodeling. These results were the basis of the present study, which focused on the function and requirements of M6 in the fly nervous system.

Results

The present study identified two novel, tissue-regulated M6 isoforms with variable N- and C- termini, and showed that M6 is the functional fly ortholog of Gpm6a. In the adult brain, the protein was localized to several neuropils, such as the optic lobe, the central complex, and the mushroom bodies. Interestingly, although reduced M6 levels triggered a mild rough-eye phenotype, hypomorphic M6 mutants exhibited a defective response to light.

Conclusions

Based on its ability to induce filopodium formation we propose that M6 is key in cell remodeling processes underlying visual system function. These results bring further insight into the role of M6/M6a in biological processes involving neuronal plasticity and behavior in flies and mammals.  相似文献   

13.
The main criterion to classify a microorganism as belonging to the genus Beggiatoa is its morphology. All multicellular, colorless, gliding bacterial filaments containing sulfur globules described so far belong to this genus. At the ultrastructural level, they show also a very complex cell envelope structure. Here we describe uncultured vacuolated and non-vacuolated bacteria from two different environments showing all characteristics necessary to assign a bacterium to the genus Beggiatoa. We also intended to investigate whether narrow and vacuolate Beggiatoa do differ morphologically as much as they do phylogenetically. Both large, vacuolated trichomes and narrow filaments devoid of vacuoles were observed. We confirmed the identity of the narrow filaments by 16S rRNA phylogenetic analysis. The diameters of the trichomes ranged from 2.4 to 34 μm, and their lengths ranged from 10 μm to over 30 mm. Narrow trichomes moved by gliding at 3.0 μm/s; large filaments moved at 1.5 μm/s. Periplasmic sulfur inclusions were observed in both types of filaments, whereas phosphorus-rich bodies were found only in narrow trichomes. On the other hand, nitrate vacuoles were observed only in large trichomes. Ultra-thin section transmission electron microscopy showed differences between the cell ultrastructure of narrow (non-vacuolated) and large (vacuolated) Beggiatoa. We observed that cell envelopes from narrow Beggiatoa consist of five layers, whereas cell envelopes from large trichomes contain four layers.  相似文献   

14.
Sargin  Idris  Karakurt  Serdar  Alkan  Sinan  Arslan  Gulsin 《Journal of fluorescence》2021,31(5):1461-1473

In the study, fluorescent imaging of live cells was performed using fluorescent carbon quantum dots derived from edible mushrooms species; Agaricus bisporus, Pleurotus ostreatus, and Suillus luteus as a fluorophore agent. Carbon quantum dots were synthesized through a facile and low-cost method based on microwave irradiation of dried mushroom samples in hydrogen peroxide solution under optimized conditions (microwave energy, solution type, duration of microwave treatment, amount of mushroom). Upon purification with centrifugation, microfiltration, and dialysis, the lyophilized carbon quantum dots were identified through UV–visible, fluorescence and FT-IR, X-ray photoelectron spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, and quantum yield calculation. Cell viability assessment of the carbon quantum dots was evaluated against human epithelial cell line PNT1A using the Alamar Blue Assay. In vitro fluorescence cell imaging studies demonstrated that the carbon dots could dynamically penetrate the cell membrane and nuclear membrane and localize in both the cytoplasm and the nucleus.

  相似文献   

15.
Acantholyda posticalis (Hymenoptera: Pamphiliidae) is an important pine pest with a world-wide distribution. To clarify the olfactory receptive mechanism of A. posticalis, scanning electron microscopy and transmission electron microscopy were used to examine the morphology, ultrastructure, and distribution of antennal sensilla of adults from two sites in China. The antennae were filiform, and the flagella comprised 32–35 flagellomeres. Six sensillum types were found. Sensilla chaetica were straight setae with sharply pointed tips and without dendrites in the lumen. Sensilla trichodea were characterized by a parallel-grooved wall and one terminal pore and were innervated by four dendrites at the base. Sensilla basiconica I possessed longitudinally grooved surfaces and multiple terminal pores, with five dendrites in the lumen. Sensilla basiconica II not only had a distinct terminal pore but also had numerous tiny wall pores and many dendritic branches within the sensillum lymph. Sensilla coeloconica had deep longitudinal grooves, one terminal pore and six dendrites, while sensilla campaniformia were thick-walled with a terminal opening and sensory nerve bundles in the lumen. Sensilla chaetica and s. trichodea were most abundant and distributed over the entire antennae, while s. basiconica I and II, s. coeloconica, and s. campaniformia were restricted to the ventral flagellar surfaces. Although the shape and structure of antennae were similar in males and females, females had significantly longer antennae than males, and males had significantly more s. basiconica I than females. We compared the morphology and structure of these sensilla to other Hymenoptera and discussed their possible functions.  相似文献   

16.
The brains of Long Evans shaker (les) rats, a model of dysmyelination, and their age- matched controls were studied by ex-vivo q-space diffusion imaging (QSI) and diffusion tensor imaging (DTI). The QSI and DTI indices were computed from the same acquisition. The les and the control brains were studied at different stages of maturation and disease progression. The mean displacement, the probability for zero displacement and kurtosis were computed from QSI data while the fractional anisotropy (FA) and the eigenvalues were computed from DTI. It was found that all QSI indices detect the les pathology, at all stages of maturation, while only some of the DTI indices could detect the les pathology. The QSI mean displacement was larger in the les group as compared with their age-matched controls while the probability for zero displacement and the kurtosis were both lower all indicating higher degree of restriction in the control brains. Since all the DTI eigenvalues were higher in the les brains as compared to controls, the less efficient DTI measure for discerning the les pathology was found to be the FA. Clearly, the most sensitive DTI parameter to the les pathology is λ3, i.e. the minimal diffusivity. Since the QSI and DTI data were obtained from the same acquisition, despite the somewhat higher SNR of the QSI data compared to the DTI data, it seems that the higher diagnostic capacity of the QSI data in this experimental model of dysmyelination, originates mainly from the higher diffusing weighting of the QSI data.  相似文献   

17.
To reveal the structural characteristics and angiotensin-converting enzyme (ACE) inhibition mechanism of Stropharia rugosoannulata mushroom peptides prepared by multifrequency ultrasound, the peptide distribution, amino acid sequence composition characteristics, formation pathway, and ACE inhibition mechanism of S. rugosoannulata mushroom peptides were studied. It was found that the peptides in S. rugosoannulata mushroom samples treated by multifrequency ultrasound (probe ultrasound and bath ultrasound mode) were mainly octapeptides, nonapeptides, and decapeptides. Hydrophobic amino acids were the primary amino acids in the peptides prepared by ultrasound, and the amino acid dissociation of the peptide bonds at the C-terminal under the action of ultrasound was performed mainly to produce hydrophobic amino acids. Pro and Val (PV), Arg and Pro (RP), Pro and Leu (PL), and Asp (D) combined with hydrophobic amino acids were the characteristic amino acid sequence basis of the active peptides of the S. rugosoannulata mushroom. The docking results of active peptides and ACE showed that hydrogen bond interaction remained the primary mode of interaction between ACE and peptides prepared by ultrasound. The peptides can bind to the amino acid residues in the ACE active pocket, zinc ions, or key amino acids in the domain, and this results in inhibition of ACE activity. Cation–pi interactions also played an important role in the binding of mushroom peptides to ACE. This study explains the structural characteristics and ACE inhibition mechanism used by S. rugosoannulata mushroom peptides prepared by ultrasound, and it will provide a reference for the development and application of S. rugosoannulata mushroom peptides.  相似文献   

18.
Leishmaniasis are a neglected group of emerging diseases that have been found in 98 countries and are caused by protozoa of the genus Leishmania. The therapy for leishmaniasis causes several side effects and leads to drug-resistant strains. Natural products from plants have exhibited activities against Leishmania in various experimental models. Physalis angulata is a widely used plant in popular medicine, and in the literature it has well-documented leishmanicidal activity. However, its mechanism of action is still unknown. Thus, this study aims to evaluate the mechanism driving the leishmanicidal activity of an aqueous extract of P. angulata root (AEPa). AEPa was effective against both promastigotes and intracellular amastigote forms of Leishmania amazonensis. This effect was mediated by an increase of reactive oxygen species (ROS), but not of nitric oxide (NO). The increased production of ROS induces cell death by phenotypes seems by apoptosis cell death in Leishmania, but not autophagy or necrosis. In addition, morphological analysis of macrophages showed that AEPa induced a high number of cytoplasmic projections, increased the volume of cytoplasm and number of vacuoles, caused cytoskeleton alterations and resulted in high spreading ability. AEPa also promoted superoxide anion (O2) production in both uninfected macrophages and those infected with Leishmania. Therefore, these results revealed that AEPa causes cell death by phenotypes seems by apoptosis cell death in L. amazonensis and modulates macrophage activation through morphofunctional alterations and O2 generation to induce Leishmania death.  相似文献   

19.
Mitochondria and plastids have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. Organellar DNAs are not naked in vivo but are associated with basic proteins to form DNA-protein complexes (called organelle nuclei). The concept of organelle nuclei provides a new approach to explain the origin, division, and inheritance of organelles. Organelles divide using organelle division rings (machineries) after organelle-nuclear division. Organelle division machineries are a chimera of the FtsZ (filamentous temperature sensitive Z) ring of bacterial origin and the eukaryotic mechanochemical dynamin ring. Thus, organelle division machineries contain a key to solve the origin of organelles (eukaryotes). The maternal inheritance of organelles developed during sexual reproduction and it is also probably intimately related to the origin of organelles. The aims of this review are to describe the strategies used to reveal the dynamics of organelle division machineries, and the significance of the division machineries and maternal inheritance in the origin and evolution of eukaryotes.  相似文献   

20.
To assess the ability of human operators to make decisions about region boundaries in significantly malformed brains, we performed a study of the reliability of morphometric measurements of specific brain structures from MRI in children with hydrocephalus and controls. Cross-sectional area measures of the corpus callosum, internal capsules and centrum semiovale, and volumes of the lateral ventricles were made in 50 children. Independent measurements were made by two raters on T1 and T2-weighted MR images. Pearson's correlation coefficients (r) and intraclass correlation coefficients (ICC) between the two rater's sets of measures were computed for each structure across all subjects. ICCs ranged from a low of 0.7502 to a high of 0.9895. All ICCs were significant at the p < .0001 level and were generally less than or equal to the corresponding Pearson's r value in every case. Therefore, the Pearson's r may overestimate the reliability. The results of this study support the claim that the ICC should be used rather than the Pearson's r when assessing interater reliability in situations where large between-group differences are present. In addition, the results show that brains malformed by disorders, such as hydrocephalus, can be reliably assessed using morphometric measures of MR images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号