首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Image quality of MeV transmission electrons is an important factor for both observation and electron tomography of microns-thick specimens with the high voltage electron microscope (HVEM) and the ultra-HVEM. In this work, we have investigated image quality of a tilted thick specimen by experiment and analysis. In a 3 MV ultra-HVEM, we obtained transmission electron images in amplitude contrast of 100 nm gold particles on the top surface of a tilted 5 μm thick amorphous epoxy-resin film. From line profiles of the images, we then measured and evaluated image blurring, contrast, and the signal-to-noise ratio (SNR) under different effective thicknesses of the tilted specimen and accelerating voltages of electrons. The variation of imaging blurring was consistent with the analysis based on multiple elastic scattering. When the effective thickness almost tripled, image blurring increased from ~3 to ~20 nm at the accelerating voltage of 3 MV. For the increase of accelerating voltage from 1 to 3 MV in the condition of the 14.6 μm effective thickness, due to the reduction of multiple scattering effects, image blurring decreased from ~54 to ~20 nm, and image contrast and SNR were both obviously enhanced by a factor of ~3 to preferable values. The specimen thickness was shown to influence image quality more than the accelerating voltage. Moreover, improvement on image quality of thick specimens due to increasing the accelerating voltage would become less when it was further increased from 2 to 3 MV in this work.  相似文献   

2.
A technique has been developed which facilitates the preparation of electro-polished micro-foil transmission electron microscopy (TEM) specimens, which have previously been machined out of ≈100 μm diameter metallic powder particles using a Focussed Ion Beam (FIB) instrument. The technique can be used to create small volume TEM specimens from most metallic powder particles and bulk metal samples. This is especially useful when the matrices are ferritic steels, which are often difficult to image in the electron microscope, since the necessary aberration corrections change as the sample is tilted in the magnetic field of the objective lens.Small samples, such as powder particles, were attached to gold support grids using deposited platinum and were then ion milled to approximately 2 μm thickness in a focussed ion beam (FIB) instrument. Subsequently, the specimen assemblies were electropolished for short durations under standard conditions, to produce large (5 μm × 5 μm) electron transparent regions of material. The specimens produced by this technique were free from FIB related artefacts and facilitated atomic resolution scanning-TEM (STEM) imaging of ferritic and nickel matrices containing, for example, yttrium rich oxide nano-dispersoids.  相似文献   

3.
Applications relevant to carbon based nano-materials have been explored using a newly installed JEOL-2200FS field emission gun (FEG) (scanning) transmission electron microscope (S)TEM which is integrated with two CEOS aberration correctors for both the TEM image-forming and the STEM probe-forming lenses. The performance and utility of this newly commission hardware has been reviewed with a particular focus on operation at an acceleration voltage of 80 kV, thus bringing the primary electron beam voltage below the knock-on threshold for carbon materials and opening up a range of possibilities for the study of carbon-based nanostructures in the aberration-corrected electron microscope. The ability of the microscope to obtain both atomic TEM images and high-quality electron diffraction patterns from carbon nanotubes was demonstrated. The chiral structure of a double-walled carbon nanotube was determined from its diffraction pattern. The aberration corrected TEM imaging technique facilitates a unique approach to accurate determination of single-walled carbon nanotube diameters. On the other hand, the probe-corrected high angle annular dark field (HAADF) STEM imaging performance allows for the detection of single gold atoms at 80 kV and was used to study the graphite interlayer spacing in a multi-walled carbon nanotube.  相似文献   

4.
This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2 MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM.  相似文献   

5.
Electric fields can be induced by electron irradiation of insulating thin film materials. In this work, the electric fields under a broad beam illumination in transmission electron microscopy (TEM) are analyzed for insulating samples. Some damage phenomena observed can be interpreted by the mechanism of damage by the induced electric field (DIEF). For broad-beam illumination in an ultra-thin specimen, the electric field near the center of the illumination may not be strong, but at the periphery of the illumination the electric field can be significant. Therefore, damage may be easily observed in these regions rather than at the center of the illumination. For a beam which is broad compared to the specimen thickness, e.g. 100  1000 nm, a strong electric field pointing inward into the specimen near the surface region may result in cation diffusion into the specimen and/or anion diffusion out to the surface region. Meanwhile, a strong electric field perpendicular to the beam direction near the edge of the illumination may attract anions into the illuminated region, but eject cations to the periphery. For a wedge-shaped specimen, the electric field points inward into thicker region, driving cations toward the thicker region, while attracting anions to the edge region. On the sharp edge, a strong electric field pointing outward may be responsible for the edge-smoothing effect observed in insulating materials.  相似文献   

6.
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1–7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6 mm stainless steel plate). In contrast, minimal sound pressure transmission (∼10–20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study.  相似文献   

7.
Nanostructured thermoelectric materials are of much interest for improving the thermoelectric figure of merit. In the present work, Sb2Te3 hexagonal nanoplates were successfully fabricated via a facile hydrothermal method. The products were characterized by means of X-ray diffraction, field-emission scanning electron microscope, transmission electron microscope and energy-dispersive X-ray spectroscopy. The results show that the typical Sb2Te3 crystal is hexagonal in shape with about 35 nm in thickness and 300 nm in edge length. The mechanism for formation of Sb2Te3 hexagonal nanoplates is primarily discussed.  相似文献   

8.
In order to estimate the probe size on the specimen surface in a newly developed low-acceleration-voltage (30–60 kV) atomic-resolution scanning transmission electron microscopy (STEM), we compared the intensity profiles of experimentally obtained annular dark field (ADF)-STEM images of Si–Si dumbbells and those of images simulated using a multislice method which takes chromatic aberration into account. However, the simulated ADF images at 30 and 60 kV were found not to match the corresponding experimental images. Subsequently, the simulated images were convolved with probe functions (normal distributions) of different widths until a good match was obtained between the images. This allowed the probe shapes corresponding to the experimental conditions to be determined. ADF-STEM images with chromatic aberration could then be calculated by an incoherent superposition of these probe functions over a range of energies. The full widths at half maximum for the probe functions were estimated to be 99.2 pm for 30 kV and 92.8 pm for 60 kV. The D59 diameters were calculated to be 154.0 pm for 30 kV and 127.8 pm for 60 kV. This means that the 30-kV probe has a larger tail than the 60-kV probe.  相似文献   

9.
This work presents the use of high resolution electron microscopy (HREM) and geometric phase analysis (GPA) to measure the interplanar spacing and strain distribution of three gold nanomaterials, respectively. The results showed that the {1 1 1} strain was smaller than the {0 0 2} strain for any kind of gold materials at the condition of same measuring method. The 0.65% of {1 1 1} strain in gold film measured by HREM (0.26% measured by GPA) was smaller than the {1 1 1} strains in two gold particles. The presence of lattice strain was interpreted according to the growth mechanism of metallic thin film. It is deduced that the {1 1 1} interplanar spacing of the gold thin film is suitable for high magnification calibration of transmission electron microscopy (TEM) and the gold film is potential to be a new calibration standard of TEM.  相似文献   

10.
This work investigates the effects of the temperature, deposition time and annealing ambient on the electro-optical and structural properties of nano crystalline (Cd–Zn)S films prepared by chemical bath deposition (CBD). The deposited films being uniform and adherent to the glass substrates are amorphous in nature and the crystallinity as well as the grain size is found to increase on post-deposition annealing. The obtained specimens are thoroughly characterized before and after annealing paying particular attention to their structure, composition and morphology. Annealing in air reduces the extent of disorder in grain boundaries and energy band-gap. A correlation between the structural and optical properties is investigated in detail. The surface morphology and structural properties of the as-deposited and annealed (Cd–Zn)S thin films are studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and optical transmission spectra. The optical transmission spectra are recorded within the range of 300–800 nm and 300–900 nm. The electroluminescent (EL) intensity is found to be maximum at a particular temperature, which decreases with further increase in temperature and peaks of photoluminescent (PL) and EL spectra are centered at 546 nm and 592 nm. The emission intensity also increases with increasing thickness of the film.  相似文献   

11.
Magnetoresistive properties of single crystalline Fe(0 0 1) films with thickness in the range 5–100 nm are reported. The films possess low coercive fields (∼100 A/m) but a weak irreversible behaviour of the magnetization remains to fields of the order of the anisotropy field. The anisotropic behaviour of the magnetoresistance is investigated as a function of temperature and film thickness. A reversal in sign of the anisotropic magnetoresistance from negative to positive values is found at low temperatures on decreasing the film thickness from 100 to 5 nm, or by increasing the temperature from 10 to 300 K of a sufficiently thick film. The reversal in sign is associated with a crossover from Lorentz force (ordinary) to spin–orbit (extraordinary) dominated scattering processes governing the anisotropic magnetoresistance as the length scale of the electron mean free path, λ, decreases.  相似文献   

12.
In this work we report on the optical properties of single-crystalline iron thin films. For this, Cr-capped Fe films with thickness, t, in the range 30–300 Å were prepared on MgO (0 0 1) by DC magnetron sputtering, and then studied by optical absorption technique within the range from 1.0 to 3.6 eV. All measurements were carried out at room temperature using a fiber optics spectrophotometer. The intensity of the transmitted light decreases with increasing film thickness. The optical constants of the films are deduced from a model that considers the transmission of light by two absorbing films on an absorbing substrate. The absorption coefficient of the Fe films is also calculated from the transmission data. The absorption spectra show the following characteristics: (i) two large absorption peaks centered at about 1.20 and 2.65 eV; and (ii) a sharp step near 1.40 eV. These structures are associated with conventional interband transitions of the iron film.  相似文献   

13.
Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of ~30–90 nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-Å electron probe. Positioning the electron probe upon transmission impact and at aloof setup with respect to the nanomaterials, we explored two types of surface modes intrinsic to GaN, surface exciton polaritons at ~8.3 eV (~150 nm) and surface guided modes at 3.88 eV (~320 nm), which are in visible/ultra-violet spectral regime above GaN bandgap of ~3.3 eV (~375 nm) and difficult to access by conventional optical spectroscopies. The explorations of these electromagnetic resonances might expand the current technical interests in GaN nanomaterials from the visible/UV range below ~3.5 eV to the spectral regime further beyond.  相似文献   

14.
The relationship between microscopic parameters and polymer charging caused by defocused electron beam irradiation is investigated using a dynamic scattering-transport model. The dynamic charging process of an irradiated polymer using a defocused 30 keV electron beam is conducted. In this study, the space charge distribution with a 30 keV non-penetrating e-beam is negative and supported by some existing experimental data. The internal potential is negative, but relatively high near the surface, and it decreases to a maximum negative value at z = 6 μm and finally tend to 0 at the bottom of film. The leakage current and the surface potential behave similarly, and the secondary electron and leakage currents follow the charging equilibrium condition. The surface potential decreases with increasing beam current density, trap concentration, capture cross section, film thickness and electron–hole recombination rate, but with decreasing electron mobility and electron energy. The total charge density increases with increasing beam current density, trap concentration, capture cross section, film thickness and electron–hole recombination rate, but with decreasing electron mobility and electron energy. This study shows a comprehensive analysis of microscopic factors of surface charging characteristics in an electron-based surface microscopy and analysis.  相似文献   

15.
《Solid State Ionics》2006,177(3-4):359-365
Mixed conducting samaria-doped ceria (SDC) anode with highly dispersed Ni catalysts exhibited a stable high performance over 1100 h in solid oxide fuel cell (SOFC) operated at constant current density of 0.6 A cm 2 at 800 °C. While the apparent average size of Ni particles was found to be increased, both the IR-free polarization performance (reflecting an effective reaction area) and the ohmic resistance (reflecting an electronic network) were not changed noticeably during the long-term operation. It was found by scanning electron microscope (SEM) and scanning transmission electron microscope (STEM) that Ni particles were rather stabilized by changing the morphology at the portion contacting with SDC surface presumably due to a strong interaction.  相似文献   

16.
The penetration depth of electron in amorphous aluminum nitride (AlN) is determined in terms of energy loss per unit length using electron beam in a cathodoluminescence (CL) apparatus. Thin films bilayers of holmium doped aluminum nitride (AlN:Ho) and thulium doped aluminum nitride (AlN:Tm) are deposited on silicon substrates by rf magnetron sputtering method at liquid nitrogen temperatures. The bilayers structure consisted of a 37.8 nm thick AlN:Tm film on the top of a 15.3 nm thick AlN:Ho film. Electron beam of different energies are allowed to penetrate the AlN:Tm/AlN:Ho bilayers film. The spectroscopic properties of AlN:Ho and AlN:Tm, the thickness of the film and the energies of electron beam are used to calculate the penetration depth of electron in amorphous AlN. Electron beam of 2.5 keV energy was able to pass through the 37.8 nm thick AlN:Tm film. The electron penetration depth for AlN is found to be 661.4 MeV/cm.  相似文献   

17.
The texture and microstrain in CoPt/Ag nanocomposite films is monitored as a function of film thickness. Perpendicular anisotropy due to (0 0 1) texturing is achieved by annealing films with thickness below 15 nm at 600°C. As a function of film thickness δ the texture evolves from weak (0 0 1) below 9 nm to strong (0 0 1) at δ=12 nm which deteriorates rapidly above 15 nm and evolves to (1 1 1) above 40 nm. The strain is minimized in the range of film thickness where the (0 0 1) texturing is optimum indicating a texturing mechanism related to the reduction of mechanical strain energy.  相似文献   

18.
《Current Applied Physics》2010,10(4):1053-1058
Effect of temperature on ultrasonic attenuation in BCC structured (CsCl-type) thallium halides (TlCl and TlBr) have been investigated in a wide temperature range 50–500 K for longitudinal and shear modes along [1 0 0], [1 1 0] and [1 1 1] directions of propagation. Starting with nearest neighbour distance and repulsive parameter and taking interactions up to next nearest neighbours, second and third order elastic moduli have been evaluated, which in turn have been used for evaluating thermal relaxation time, Gruneisen numbers, acoustic coupling constants, ultrasonic velocity and ultrasonic attenuation. Ultrasonic attenuation in these bcc structured crystalline materials has been found less than the fcc crystalline materials. The results have been discussed and compared with available data.  相似文献   

19.
Multilayers composed of Fe and MgF2 with layer thicknesses between 9 Å and 100 Å and of 30 Å, respectively, were prepared with an ultrahigh-vacuum deposition technique. Medium-angle X-ray data show that the Fe layers in the BCC phase have considerable (1 1 0) texture. Periodicity due to multilayered structures was confirmed by a small-angle X-ray diffraction study and cross-section transmission electron microscope for films with Fe layer thicknesses >45 Å. In an Fe/MgF2(9 Å/30 Å) sample, an island structure for the Fe layers was suggested by the existence of superparamagnetism in a film. At 4.2 K, enhancements of both magnetization and hyperfine field were observed in films having Fe layers thinner than 40 Å. The maxima in the magnetization (233 emu/g of Fe) and in the average hyperfine field (390 kOe) at 4.2 K were found in an Fe/MgF2(9 Å/30 Å) film and were approximately 105% and 115% that of the bulk α-Fe, respectively. The thickness dependence suggests a 12% enhancement in the magnetic moment of interface Fe atoms. No exchange bias was found in the films, implying that antiferromagnetic fluorides are not formed at the interface, which is different from the case of Fe/LiF and Fe/CaF2 multilayers.  相似文献   

20.
In order to investigate the relation among the superconducting transition Tc, carrier density n, resistivity ρ and the microstructure in the polycrystalline (In2O3)1?x–(ZnO)x films, we prepared specimen films by post annealing of amorphous films with x = 0.025 at various annealing temperature Ta and for annealing time ta = 1 h and 4 h. As for microstructures, we have investigated the distribution of elements by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). We have found followings: (1) The annealed films clearly show the superconductivity of which Tc depends on Ta, ta and n. This indicates that the superconductivity is determined by the combination of crystallinity and carrier density. (2) The data on STEM–EELS spectra mapping of indium plasmon indicate that droplets of the pure indium phase exist inside a film, where the distribution of these droplets dispersed. Therefore, it seems that droplets do not form an electrical conducting path, that is, it is possible that observed superconductivity is due to intrinsic characteristic of polycrystalline (In2O3)1?x–(ZnO)x films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号