首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper presents a gas-kinetic theory based multidimensional high-order method for the compressible Naiver–Stokes solutions. In our previous study, a spatially and temporally dependent third-order flux scheme with the use of a third-order gas distribution function is employed.However, the third-order flux scheme is quite complicated and less robust than the second-order scheme. In order to reduce its complexity and improve its robustness, the secondorder flux scheme is adopted instead in this paper, while the temporal order of method is maintained by using a two stage temporal discretization. In addition, its CPU cost is relatively lower than the previous scheme. Several test cases in two and three dimensions, containing high Mach number compressible flows and low speed high Reynolds number laminar flows, are presented to demonstrate the method capacity.  相似文献   

3.
The paper studies unsteady Navier–Stokes equations with two space variables. It shows that the non-linear fourth-order equation for the stream function with three independent variables admits functional separable solutions described by a system of three partial differential equations with two independent variables. The system is found to have a number of exact solutions, which generate new classes of exact solutions to the Navier–Stokes equations. All these solutions involve two or more arbitrary functions of a single argument as well as a few free parameters. Many of the solutions are expressed in terms of elementary functions, provided that the arbitrary functions are also elementary; such solutions, having relatively simple form and presenting significant arbitrariness, can be especially useful for solving certain model problems and testing numerical and approximate analytical hydrodynamic methods. The paper uses the obtained results to describe some model unsteady flows of viscous incompressible fluids, including flows through a strip with permeable walls, flows through a strip with extrusion at the boundaries, flows onto a shrinking plane, and others. Some blow-up modes, which correspond to singular solutions, are discussed.  相似文献   

4.
We consider the Navier–Stokes equations in a thin domain of which the top and bottom surfaces are not flat. The velocity fields are subject to the Navier conditions on those boundaries and the periodicity condition on the other sides of the domain. This toy model arises from studies of climate and oceanic flows. We show that the strong solutions exist for all time provided the initial data belong to a “large” set in the Sobolev space H 1. Furthermore we show, for both the autonomous and the nonautonomous problems, the existence of a global attractor for the class of all strong solutions. This attractor is proved to be also the global attractor for the Leray–Hopf weak solutions of the Navier–Stokes equations. One issue that arises here is a nontrivial contribution due to the boundary terms. We show how the boundary conditions imposed on the velocity fields affect the estimates of the Stokes operator and the (nonlinear) inertial term in the Navier–Stokes equations. This results in a new estimate of the trilinear term, which in turn permits a short and simple proof of the existence of strong solutions for all time.  相似文献   

5.
We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier–Stokes equation with the Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in L . This allows us to obtain the vanishing viscosity limit to the incompressible Euler system from a strong compactness argument.  相似文献   

6.
7.
We introduce a variational approach to treat the regularity of the Navier–Stokes equations both in dimensions 2 and 3. Though the method allows the full treatment in dimension 2, we seek to precisely stress where it breaks down for dimension 3. The basic feature of the procedure is to look directly for strong solutions, by minimizing a suitable error functional that measures the departure of feasible fields from being a solution of the problem. By considering the divergence-free property as part of feasibility, we are able to avoid the explicit analysis of the pressure. Two main points in our analysis are:
Coercivity for the error functional is achieved by looking at scaling.  相似文献   

8.
The authors establish a Serrin-type blowup criterion for the Cauchy problem of the three-dimensional full compressible Navier–Stokes system, which states that a strong or smooth solution exists globally, provided that the velocity satisfies Serrin’s condition and that the temporal integral of the maximum norm of the divergence of the velocity is bounded. In particular, this criterion extends the well-known Serrin’s blowup criterion for the three-dimensional incompressible Navier–Stokes equations to the three-dimensional full compressible system and is just the same as that of the barotropic case.  相似文献   

9.
10.
We investigate Kato’s method for parabolic equations with a quadratic non-linearity in an abstract form. We extract several properties known from linear systems theory which turn out to be the essential ingredients for the method. We give necessary and sufficient conditions for these conditions and provide new and more general proofs, based on real interpolation. In application to the Navier–Stokes equations, our approach unifies several results known in the literature, partly with different proofs. Moreover, we establish new existence and uniqueness results for rough initial data on arbitrary domains in \mathbbR3{\mathbb{R}}^{3} and irregular domains in \mathbbRn{\mathbb{R}}^{n}.  相似文献   

11.
We tackle the issue of the inviscid limit of the incompressible Navier–Stokes equations when the Navier slip-with-friction conditions are prescribed on impermeable boundaries. We justify an asymptotic expansion which involves a weak amplitude boundary layer, with the same thickness as in Prandtl’s theory and a linear behavior. This analysis holds for general regular domains, in both dimensions two and three.  相似文献   

12.
The Navier–Stokes–Fourier system describing the motion of a compressible, viscous and heat conducting fluid is known to possess global-in-time weak solutions for any initial data of finite energy. We show that a weak solution coincides with the strong solution, emanating from the same initial data, as long as the latter exists. In particular, strong solutions are unique within the class of weak solutions.  相似文献   

13.
14.
This paper presents an immersed boundary method for compressible Navier–Stokes equations in irregular domains, based on a local radial basis function approximation. This approach allows one to define a reconstruction of the radial basis functions on each irregular interface cell to treat both the Dirichlet and Neumann boundary conditions accurately on the immersed interfaces. Several numerical examples, including problems with available analytical solutions and the well-documented flow past an airfoil, are presented to test the proposed method. The numerical results demonstrate that the proposed method provides accurate solutions for viscous compressible flows.  相似文献   

15.
In this paper we deal with the isentropic (compressible) Navier-Stokes equation in one space dimension and we adress the problem of the boundary controllability for this system. We prove that we can drive initial conditions which are sufficiently close to some constant states to those constant states. This is done under some natural hypotheses on the time of control and on the regularity on the initial conditions.  相似文献   

16.
ABSTRACT

This paper presents the numerical results of a shape optimisation problem with regard to delaying the transition of a Navier–Stokes flow field from laminar to turbulent by using the theory developed by Nakazawa and Azegami. The theory was reviewed within the framework of functional analysis and updated with another expression of the shape derivative with respect to the objective function. A computer program was developed with the FreeFEM++. Numerical analyses were performed for two types of problems: a two-dimensional Poiseuille flow field with a sudden expansion and a two-dimensional uniform flow field around an isolated body. From the first example, two local minimum points of symmetric and asymmetric flow fields were determined, and the asymmetric flow field was found to be more stable. With regard to the second example, we reached the local minimum point of an elliptical shape, and infrequently determined a solution converging to an elliptical shape with the bluff in the leeward direction. By comparison, the superiority of the elliptical shape was obvious.  相似文献   

17.
The first goal of this paper is to study the large time behavior of solutions to the Cauchy problem for the 3-dimensional incompressible Navier–Stokes system. The Marcinkiewicz space L3, is used to prove some asymptotic stability results for solutions with infinite energy. Next, this approach is applied to the analysis of two classical regularized Navier–Stokes systems. The first one was introduced by J. Leray and consists in mollifying the nonlinearity. The second one was proposed by J.-L. Lions, who added the artificial hyper-viscosity (–)/ 2, > 2 to the model. It is shown in the present paper that, in the whole space, solutions to those modified models converge as t toward solutions of the original Navier–Stokes system.  相似文献   

18.
The Cahn–Hilliard–Navier–Stokes system is based on a well-known diffuse interface model and describes the evolution of an incompressible isothermal mixture of binary fluids. A nonlocal variant consists of the Navier–Stokes equations suitably coupled with a nonlocal Cahn–Hilliard equation. The authors, jointly with P. Colli, have already proven the existence of a global weak solution to a nonlocal Cahn–Hilliard–Navier–Stokes system subject to no-slip and no-flux boundary conditions. Uniqueness is still an open issue even in dimension two. However, in this case, the energy identity holds. This property is exploited here to define, following J.M. Ball’s approach, a generalized semiflow which has a global attractor. Through a similar argument, we can also show the existence of a (connected) global attractor for the convective nonlocal Cahn–Hilliard equation with a given velocity field, even in dimension three. Finally, we demonstrate that any weak solution fulfilling the energy inequality also satisfies a dissipative estimate. This allows us to establish the existence of the trajectory attractor also in dimension three with a time dependent external force.  相似文献   

19.
In this article, we describe some aspects of the diffuse interface modelling of incompressible flows, composed of three immiscible components, without phase change. In the diffuse interface methods, system evolution is driven by the minimisation of a free energy. The originality of our approach, derived from the Cahn–Hilliard model, comes from the particular form of energy we proposed in Boyer and Lapuerta (M2AN Math Model Numer Anal, 40:653–987,2006), which, among other interesting properties, ensures consistency with the two-phase model. The modelling of three-phase flows is further completed by coupling the Cahn–Hilliard system and the Navier–Stokes equations where surface tensions are taken into account through volume capillary forces. These equations are discretized in time and space paying attention to the fact that most of the main properties of the original model (volume conservation and energy estimate) have to be maintained at the discrete level. An adaptive refinement method is finally used to obtain an accurate resolution of very thin moving internal layers, while limiting the total number of cells in the grids all along the simulation. Different numerical results are given, from the validation case of the lens spreading between two phases (contact angles and pressure jumps), to the study of mass transfer through a liquid/liquid interface crossed by a single rising gas bubble. The numerical applications are performed with large ratio between densities and viscosities and three different surface tensions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号