首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eggs of the grape vine moth, Lobesia botrana (Denis and Schiffermuller), ranging in age from 1–24 to 73–96 h, were exposed, at 24 h intervals, to gamma radiation ranging from 25–600 Gy. The effects of gamma radiation on egg hatch, pupation, adult emergence, sex ratio and rate of development were examined. Results showed that the radiosensitivity of the grape vine moth eggs decreased with increasing age and increased with increasing radiation dose. Egg hatch in 1–24 h old eggs was significantly affected at 25 Gy and completely prevented at 100 Gy. At the age of 25–48 h, radiation sensitivity was only a little lower; egg hatch at 100 Gy was <1% and at 125 Gy no egg hatch was observed. Egg sensitivity to gamma irradiation decreased significantly in the 49–72 h age group; egg hatch was 66% at 100 Gy, and 500 Gy did not completely stop egg hatch (<1%). Eggs irradiated a few hours before egg hatch (73–96 h old) were the most resistant; 150 Gy had no significant effect on egg hatch and at 600 Gy over 33% of the eggs hatched. When pupation or adult emergence was used as a criterion for measuring effectiveness, however, the effects of gamma radiation were very severe. In the most resistant age group (73–96 h old), 150 Gy completely prevented pupation and adult emergence and all larvae resulting from eggs irradiated <49 h old died before pupation. In addition, the rate of development of immature stages resulting from irradiated eggs was negatively affected and sex ratio was skewed in favor of males.  相似文献   

2.
Lycium fruit, popular traditional Chinese medicine and food supplement generally is ingested uncooked, was exposed to several doses of gamma irradiation (0–14 kGy) to evaluate decontamination efficiency, changes in chemical composition, and changes in sensory characteristic. In this study, lycium fruit specimens contained microbial counts of 3.1×103–1.7×105 CFU/g and 14 kGy was sufficient for microbial decontamination. Before irradiation, the main microbe isolated from lycium fruit was identified as a strain of yeast, Cryptococcus laurentii. After 10 kGy of irradiation, a Gram-positive spore-forming bacterium, Bacillus cereus, was the only survivor. The first 90% reduction (LD90) of C. laurentii and B. cereus was approximately 0.6 and 6.5 kGy, respectively, the D10 doses of C. laurentii and B. cereus was approximately 0.6 and 1.7 kGy, respectively. After 14 kGy irradiation, except the vitamin C content, other chemical composition (e.g., crude protein, β-carotene, riboflavin, fructose, etc.) and the sensory characteristic of lycium fruit specimens did not have significant changes. In conclusion, 14 kGy is the optimal decontamination dose for lycium fruit for retention of its sensory quality and extension of shelf life.  相似文献   

3.
The yield increase of secondary metabolite production was examined in plant cell cultures with the use of relatively low to high doses gamma irradiation. Suspension culture of Lithospermum erythrorhizon cells was irradiated to 2, 16, and 32 Gy. The gamma irradiation significantly stimulated the shikonin biosynthesis of the cells and increased the total shikonin yields (intracellular+extracellular shikonin yields) by 400% at 16 Gy and by only 240% and 180% at 2 and 32 Gy, respectively. One of the key enzymes for the shikonin biosynthesis of cells, p-hydroxylbenzoic acid (PHB) geranyltransferase, was found to be stimulated by the gamma-radiation treatments. The activity of PHB geranyltransferase was increased at 2 and 16 Gy with a negligible change at 32 Gy. In contrast, the activity of PHB glucosyltransferase was slightly changed at all doses of gamma radiation compared with the control cells. Therefore, the increase in PHB geranyltransferase activity leads to the accumulation of secondary metabolites such as a shikonin, which may contribute to plant defense against the stresses induced by gamma irradiation.  相似文献   

4.
Effect of medium dose gamma irradiation on PAL and antioxidant activity of peach fruit was investigated. Peach fruit after harvest at commercial maturity was irradiated in the dose range 1.0–2.0 kGy, stored under refrigerated conditions (3±1 °C, RH 80%) and evaluated at intervals of 7 days. The antioxidant activity as determined by DPPH and FRAP methods revealed significant (p≤0.05) increase particularly in the dose range 1.6–2.0 kGy. During storage, maximum increase in both PAL and antioxidant activity was observed after 21 days. Positive correlation (r=0.75) existed between antioxidant activity and total phenols. EC50 values as obtained from DPPH and FRAP experiments were significantly (p≤0.05) lower in irradiated fruits compared to control.  相似文献   

5.
The present investigation reports the effect of influence of aluminum ions on radiation damage of strontium borosilicate glasses studied by means of spectroscopic (viz., optical absorption (OA), infrared and Raman spectra). The composition of the glasses chosen for the study is 40SrO–xAl2O3–(15-x) B2O3–40SiO2 (x = 5, 7.5, 10), all in mol%. The glasses were synthesized by conventional melt quenching method. Later, the samples were exposed to gamma (γ) radiation dose of strengths 10 kGy and 30 kGy with a dose rate of 1.5 Gy/s using 60Co as radiation source. The infrared spectra (IR), Raman spectra and optical absorption (OA) spectra of the samples were recorded at ambient temperature before and after irradiation. The OA spectra of the pre-irradiated samples do not exhibit any absorption bands in the UV–vis regions and IR and Raman spectra exhibited conventional vibrational bands due to different borate, silicate AlO4 and AlO6 structural units. The OA spectra of post irradiated samples exhibited a broad absorption band in the wavelength region 600–750 nm; it is attributed to electron trapped color centers. The intensity of this peak is observed to increase with increase of the γ-ray dose. Considerable changes in the intensities of various bands in the IR and Raman spectra were also observed. The changes were explained based on structural modifications taking place in the glass network due to γ-ray irradiation and finally it is concluded that the glasses mixed with 10.0 mol% of Al2O3 are relatively more radiation resistant.  相似文献   

6.
Litchi (Litchi chinensis) is a non-climacteric tropical fruit. The fruit has a short shelf-life making its marketing difficult. Physical, biochemical, microbiological, and organoleptic properties of two major commercially grown Indian cultivars of litchi, ‘Shahi’ and ‘China’ were studied. The effect of gamma radiation processing and low temperature storage on the above parameters was evaluated to standardize the optimal process parameters for shelf-life extension of litchi. Physical and biochemical parameters analyzed included weight, moisture, pH, titratable acidity, texture, color, total and reducing sugar, total soluble solids, vitamin C, and flavonoid content. Weight, moisture content, and pH in the fresh fruit ranged between 21–26 g, 74–77%, and 3.7–4.4, respectively, whereas, total and reducing sugar ranged 10–15, and 10–13 g%, respectively. In ‘Shahi’ vitamin C content was found to be around 17–19 mg%, whereas, in ‘China’ it was 22–28 mg%. Flavonoid content was in the range of 26–34 μg catechin equivalents/g of fresh fruit. Total surface and internal bacterial load was around 4 and 3 log cfu/g, respectively. Surface yeast-mold count (YMC) was ~3 log cfu/g whereas internal YMC was ~2 log cfu/g. Radiation treatment reduced microbial load in a dose dependent manner. Treatment at 0.5 kGy did not significantly affect the quality parameters of the fruit. Treated fruits retained the “good” organoleptic rating during storage. Thus, radiation treatment (0.5 kGy) in combination with low temperature (4 °C) storage achieved a shelf-life of 28 days for litchi fruit.  相似文献   

7.
Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin–papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25–35 kGy. The irradiated chitin–papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin–papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.  相似文献   

8.
In this study, radiation stability of poly(bisphenol-a-epichlorohydrin) (PBEH) was studied via gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h, in order to understand the possible use of PBEH in radioactive waste management as a solidifying agent. The total dose of irradiation was up to 2150 kGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with the change of dose rate and total dose of irradiation. Tensile strength at yield was increased first then decreased when irradiated, while toughness decreased. The half value dose (HVD) of elongation was found as 29 kGy at dose rate of 1540 Gy/h. The non-irradiated PBEH was transparent, and the color changed to yellow with irradiation. Mechanical tests showed that PBEH has high radiation stability although there were some structural changes. It was seen that PBEH is a candidate polymer to be used in the immobilization of radioactive waste regarding radiation stability.  相似文献   

9.
In this study, ionizing radiation in combination with sodium hypochlorite (NaOCl) and ultrasonication (US) was examined for its effectiveness in reducing Bacillus cereus F4810/72 spores in raw rice. We also evaluated whether the combined processing would produce synergistic effects compared to the individual treatments. The concentration of the initial B. cereus spore was approximately 2.9 log10 CFU/g. After 0.1, 0.2 and 0.3 kGy irradiation treatment, spore populations were reduced by 1.3, 1.4 and 1.6 log10 CFU/g, respectively. In the case of combined gamma irradiation and NaOCl/US treatment, the reduction was higher than those of each single treatment. The combined treatment of 0.1, 0.2 and 0.3 kGy and NaOCl (600–1000 ppm)/US (5–20 min) completely destroyed the spores in raw rice while the spores were not completely destroyed in the control treatment (0 kGy). These results indicated that it could be more effective to combine NaOCl with low dose gamma irradiation than high dose (concentration) of individual disinfection treatment to destroy B. cereus spores in food such as raw rice.  相似文献   

10.
The history of the development of generic phytosanitary irradiation (PI) treatments is discussed beginning with its initial proposal in 1986. Generic PI treatments in use today are 150 Gy for all hosts of Tephritidae, 250 Gy for all arthropods on mango and papaya shipped from Australia to New Zealand, 300 Gy for all arthropods on mango shipped from Australia to Malaysia, 350 Gy for all arthropods on lychee shipped from Australia to New Zealand and 400 Gy for all hosts of insects other than pupae and adult Lepidoptera shipped to the United States. Efforts to develop additional generic PI treatments and reduce the dose for the 400 Gy treatment are ongoing with a broad based 5-year, 12-nation cooperative research project coordinated by the joint Food and Agricultural Organization/International Atomic Energy Agency Program on Nuclear Techniques in Food and Agriculture. Key groups identified for further development of generic PI treatments are Lepidoptera (eggs and larvae), mealybugs and scale insects. A dose of 250 Gy may suffice for these three groups plus others, such as thrips, weevils and whiteflies.  相似文献   

11.
Gamma-ray irradiation is a very useful tool to improve the physicochemical properties of various biodegradable polymers without the use of a heating and crosslinking agent. The purpose of this study was to investigate the degradation behavior of poly (l-lactide-co-glycolide) (PLGA) depending on the applied gamma-ray irradiation doses. PLGA films prepared through a solvent casting method were irradiated with gamma radiation at various irradiation doses. The irradiation was performed using 60Co gamma-ray doses of 25–500 kGy at a dose rate of 10 kGy/h.The degradation of irradiated films was observed through the main chain scission. Exposure to gamma radiation dropped the average molecular weight (Mn and Mw), and weakened the mechanical strength. Thermograms of irradiated film show various changes of thermal properties in accordance with gamma-ray irradiation doses. Gamma-ray irradiation changes the morphology of the surface, and improves the wettability. In conclusion, gamma-ray irradiation will be a useful tool to control the rate of hydrolytic degradation of these PLGA films.  相似文献   

12.
Cyanidin-3-O-xylosylrutinoside (cya-3-O-xylrut), a major pigment in Schizandra chinensis Baillon, was effectively removed by gamma irradiation of greater than 2 kGy, whereas quercetin, the most abundant of the flavonoids and has anti-inflammatory and anti-allergic effects, could be generated by degradation of cya-3-O-xylrut. In the present study, we investigated the effect of combination treatment of gamma irradiation and hydrogen peroxide (H2O2) on the formation of quercetin through the degradation of cya-3-O-xylrut. Cya-3-O-xylrut was significantly degraded (~93%) by gamma irradiation at 2 kGy and it was completely removed by a combination treatment (0.2% H2O2 and 2 kGy gamma ray). The formation of quercetin was significantly appeared at 2 kGy of gamma ray, together with disappearance of cya-3-O-xylrut. The quercetin formation by gamma ray is 3.2 μg/ml and combination treatment is 7.7 μg/ml. Therefore, the combination treatment of H2O2 and gamma ray is more effective to convert cya-3-O-xylrut into quercetin than gamma irradiation only. In conclusion, gamma ray combined with H2O2 would be a promising tool for bio-conversion of organic compounds.  相似文献   

13.
In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation.  相似文献   

14.
In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106–107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105–106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.  相似文献   

15.
Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1?25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).  相似文献   

16.
《Solid State Sciences》2007,9(7):619-627
Three new crystal structures, isotypic with β-Zr2O(PO4)2, have been resolved by the Rietveld method. All crystallize with an orthorhombic cell (S.G.: Cmca) with a = 7.1393(2) Å, b = 9.2641(2) Å, c = 12.5262(4) Å, V = 828.46(4) Å3 and Z = 8 for Th(OH)PO4; a = 7.0100(2) Å, b = 9.1200(2) Å, c = 12.3665(3) Å, V = 790.60(4) Å3 and Z = 8 for U(OH)PO4; a = 7.1691(3) Å, b = 9.2388(4) Å, c = 12.8204(7) Å, V = 849.15(7) Å3 and Z = 4 for Th2O(PO4)2. By heating, the M(OH)PO4 (M = Th, U) compounds condense topotactically into M2O(PO4)2, with a change of the environment of the tetravalent cation that lowers from 8 to 7 oxygen atoms. The lower stability of Th2O(PO4)2 compared to that of U2O(PO4)2 seems to result from this unusual environment for tetravalent thorium.  相似文献   

17.
The apparent molar heat capacities Cp, φ  and apparent molar volumes Vφ  of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) were measured at T =  298.15 K and p =  0.1 MPa with a Sodev (Picker) flow microcalorimeter and a Sodev vibrating-tube densimeter, respectively. These measurements extend from lower molalities of m =  (0.005 to 0.018) mol ·kg  1to m =  (0.025 to 0.434) mol ·kg  1, where the upper molality limits are slightly below those of the saturated solutions. There are no previously published apparent molar heat capacities for these systems, and only limited apparent molar volume information. Considerable amounts of the R SO4 + (aq) and R(SO4)2  (aq) complexes are present, where R denotes a rare-earth, which complicates the interpretation of these thermodynamic quantities. Values of the ionic molar heat capacities and ionic molar volumes of these complexes at infinite dilution are derived from the experimental information, but the calculations are necessarily quite approximate because of the need to estimate ionic activity coefficients and other thermodynamic quantities. Nevertheless, the derived standard ionic molar properties for the various R SO4 + (aq) and R(SO4)2  (aq) complexes are probably realistic approximations to the actual values. Comparisons indicate that Vφ  {RSO4 + , aq, 298.15K}  =   (6  ±  4)cm3· mol  1and Vφ  {R(SO4)2  , aq, 298.15K}  =  (35  ±  3)cm3· mol  1, with no significant variation with rare-earth. In contrast, values of Cp, φ  { RSO4 + , aq, 298.15K } generally increase with the atomic number of the rare-earth, whereas Cp, φ  { R(SO4)2  , aq, 298.15K } shows a less regular trend, although its values are always positive and tend to be larger for the heavier than for the light rare earths.  相似文献   

18.
《Solid State Sciences》2007,9(2):149-154
The mild-condition syntheses, single-crystal structures and properties of H3N(CH2)5NH3·Zn3(HPO3)4 and β-H3N(CH2)6NH3·Zn3(HPO3)4 are reported. Both are constructed from (3,4)-nets of ZnO4 tetrahedra and HPO3 pyramids, sharing vertices to result in three-dimensional anionic open-frameworks. In both materials, the organic species interacts with the framework by way of N–H⋯O bonds. Crystal data: H3N(CH2)5NH3·Zn3(HPO3)4, Mr = 620.22, orthorhombic, Pccn (No. 56), a = 9.5364 (9) Å, b = 21.8015 (19) Å, c = 9.1118 (7) Å, V = 1894.4 (3) Å3, Z = 4, R(F) = 0.044, wR(F2) = 0.111. β-H3N(CH2)6NH3·Zn3(HPO3)4, Mr = 634.25, monoclinic, P21/n (No. 14), a = 8.7627 (1) Å, b = 13.8117 (2) Å, c = 16.6187 (3) Å, β = 92.680 (1)°, V = 2009.12 (5) Å3, Z = 4, R(F) = 0.072, wR(F2) = 0.187.  相似文献   

19.
《Comptes Rendus Chimie》2007,10(12):1170-1179
In continuation of studies carried out previously [I. Bernal, Inorg. Chim. Acta 96 (1985) 99; I. Bernal, Inorg. Chim. Acta (1986) 121; I. Bernal, E.O. Schlemper, C.K. Fair, Inorg. Chim. Acta 115 (1986) 25; I. Bernal, Inorg. Chim. Acta 101 (1985) 175; I. Bernal, J. Cetrullo, J. Coord. Chem. 20 (1989) 237], we have now expanded the nature and number of cations associated with the [trans-(NH3)2Co(NO2)4] anion in order to better document when, and how, this helical propeller species crystallizes as a conglomerate.[(tren)Co(NO2)2][trans-(NH3)2Co(NO2)4] (I) crystallizes as a racemate in space group P21/n with cell constants of a = 15.8900(2), b = 19.7800(3), c = 26.6200(4) Å, β = 101.970(3)°, z = 15.[(tren)Co(ox)][trans-(NH3)2Co(NO2)4] (II) crystallizes as a racemate in space group I2/a with cell constants of a = 21.592(11), b = 7.050(4), c = 26.46(2) Å, β = 93.09(6)°, z = 8.[(en)2Co(ox)][trans-(NH3)2Co(NO2)4] (III) crystallizes as a racemate in space group P21/n with cell constants of a = 6.4740(1), b = 22.8950(6), c = 13.1660(3) Å, β = 97.3310(10)°, z = 4.[trans-(pn)2Co(NO2)2][trans-(NH3)2Co(NO2)4] (IV) also crystallizes as a racemate in space group P(¯1; no. 2) with cell constants of a = 6.508(2), b = 8.829(5), c = 9.851(5) Å, α = 72.84(2), β = 80.15(3), and γ = 81.45(6)°, z = 1.The most notable results are as follows: (1) all four compounds studied are racemates unlike the previously studied [cis-Co(en)2(NO2)2][trans-(NH3)2Co(NO2)4] [I. Bernal, Inorg Chim Acta 101 (1985) 175] (V) and K[trans-(NH3)2Co(NO2)4] (VI) that crystallize as conglomerates. Nevertheless, they share certain crystalline features, which are readily observed in their packing diagrams.In all the four cases the new data were collected at 295 K and 120 K, using Mo Kα radiation; the former with a Nonius CAD-4 diffractometer and the latter with a Nonius CCD instrument. Of primary interest to us are the changes in packing caused by repeated changes in the charge compensating cations. Comparisons with the packing observed previously in [cis-Co(en)2(NO2)2][trans-(NH3)2Co(NO2)4] (V) and K[trans-(NH3)2Co(NO2)4] (VI) are made since, at the time of publications of those early papers, no detailed study of the packing characteristics of these anions was published and the existing graphic software were primitive compared with the current packages. This oversight is remedied below.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号