首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the inhibition of photosynthetic electron transport by UV-A (320-400 nm) radiation in isolated spinach thylakoids. Measurements of Photosystem II (PSII) and Photosystem I activity by Clark-type oxygen electrode demonstrated that electron flow is impaired primarily in PSII. The site and mechanism of UV-A induced damage within PSII was assessed by flash-induced oxygen and thermoluminescence (TL) measurements. The flash pattern of oxygen evolution showed an increased amount of the S0 state in the dark, which indicate a direct effect of UV-A in the water-oxidizing complex. TL measurements revealed the UV-A induced loss of PSII centers in which charge recombination between the S2 state of the water oxidizing complex and the semireduced Q(A)- and Q(B)- quinone electron acceptors occur. Flash-induced oscillation of the B TL band, originating from the S2Q(B)- recombination, showed a decreased amplitude after the second flash relative to that after the first one, which is consistent with a decrease in the amount of Q(B)- relative to Q(B) in dark adapted samples. The efficiency of UV-A light in inhibiting PSII electron transport exceeds that of visible light 45-fold on the basis of equal energy and 60-fold on the basis of equal photon number, respectively. In conclusion, our data show that UV-A radiation is highly damaging for PSII, whose electron transport is affected both at the water oxidizing complex, and the binding site of the Q(B) quinone electron acceptor in a similar way to that caused by UV-B radiation.  相似文献   

2.
3.
A mathematical-physical analysis model, which describes individually the electronic reflux of several significant components in the photosynthesis electron transport chain, was firstly developed. The process of electrons flowing back to the oxidized reaction center P(680)(+) was simulated by a series of photochemical reaction equations, resulting in getting the linked differential equations of delayed fluorescence (DF) intensity. MATLAB provided a computationally efficient method to solve these linked equations. Simulations based on this model showed that the decay kinetics of DF accord with double exponential. DF components decaying in the millisecond range (fast phase) are related to the charge recombination of P(680)(+) and Q(A)(-). The components decaying in the seconds range are associated with the recombination of P(680)(+) with Q(B)(2-). The developed model was tested in maize leaves treated with different electron blockers to induce changes in photosynthesis electron transport chain. The experimental results demonstrated that the developed model can accurately determine the regulatory effects of electron blockers on photosynthesis electron transport chain. Therefore, the model presented here could be potentially useful for studying the electron transfer in plant. It also provides an experimental workbench for testing hypotheses as to the underlying mechanism controlling the change for different phases of DF.  相似文献   

4.
By using saturating flash, we investigated the change in the rapid fluorescence rise when Lemna minor leaf was exposed to different light conditions and treated with exogenous electron acceptors (methyl viologen and duroquinone) and electron donor (hydroxylamine). Investigation was carried out by using combined pulse amplitude modulated fluorometer and plant efficiency analyzer system, which were employed simultaneously to provide different light conditions and to induce rapid fluorescence rise respectively. We have shown that when leaf of L. minor was exposed to different conditions of illumination, rapid fluorescence rise was greatly influenced by the electron transport functions beyond quinone A-plastoquinone reduction. This was indicated by the change in both fluorescence yield and appearance time of the different transients. When exogenous electron donor (hydroxylamine) and acceptors (methyl viologen and duroquinone) were applied in in vivo condition, we showed that rapid fluorescence rise represented a reliable indicator of PSII-PSI electron transport state and energy dissipation process.  相似文献   

5.
6.
The 77 K chlorophyll fluorescence spectra of Arabidopsis thaliana mutants deficient in lipid fatty acid desaturation have been used in order to further explore the influence of the modification of LHC II after mutation and proteolitic treatment on the energy transfer between the chlorophyll-protein complexes, as well as on the structure-function relationship in the supramolecular complex of Photosystem II. The gaussian decomposition and analysis of the fluorescence bands associated with PS II complex show the controversial action of the trypsin in the investigated thylakoid membranes. This reveals that the organization of PS II complexes is different in the wild type and both mutants indicating altered connection between the LHC II and the RC core complexes of PS II in both mutants. The results obtained demonstrate that different amounts of oligomer and monomer forms of LHC II in the mutants (LK3 and JB67), arising from lipid modification, are responsible for different proteolytic action in their thylakoid membranes.  相似文献   

7.
Electron transfer (ET) processes in reaction centers (RC) of photosystem II (PSII) are prerequisites of oxygen generation. They are promoted by energy transfer from antenna to RC. Here, we calculated the redox potentials of chlorophylla/beta-carotene (Chla/Car) in PSII CP43/CP47 antenna complexes, solving the linearized Poisson-Boltzmann (LPB) equation based on the PSII crystal structure. The majority of antenna Chla redox potentials for reduction/oxidation were lower than those of RC Chla. Hence, ET events with excess electrons remain localized in the RC. Simultaneously antenna Chla can serve as an efficient cation sink to rereduce RC Chla if normal PSII function is inhibited. Especially three antenna Chla (Chl-47, Chl-18, and Chl-12) and two Car bridging the space between Chl(Z(D1)) and cytochrome (cyt) b559 have the same level of oxidation redox potential. Together with Chl(Z(D2)) they form an electron hole transfer pathway and temporary storage device guiding from the oxidized P680(+.) Chla to the cyt b559. This path may play a photoprotective role as efficient electron hole quencher.  相似文献   

8.
Using the method of Modified Neglect of Diatomic Overlap (MNDO), the electronic structure of plastoquinol (PQH(2)) and plastoquinone (PQ) in neutral, singly (PQ(-)) and doubly (PQ(2-)) reduced states is studied. The conformational analysis performed on these molecules shows that in the lowest energy conformation, the angle between the first link of the tail backbone and the ring plane of neutral and singly reduced PQ and plastoquinol is nearly the same and differs by 15 degrees from that of doubly reduced PQ. Nevertheless, for all states of plastoquinone and for plastoquinol, the total energy changes by less than 0.2 eV when the studied angle is varied from 0 degrees to 180 degrees. As in Rhodobacter sphaeroides, the oxygen of the PQ ring is reported to form a hydrogen bond with a nitrogen in the ring of Histidine (His) L 190. The energy of the PQ-His complex was calculated for different redox states of PQ and for several values of the distance between the molecules (N-O distance from 0.2 to 0.5 nm). For every considered complexes, the total energy dependence on the proton position on the line connecting the N and O atoms was determined, to see if the hydrogen bond is formed. It is shown that for only singly reduced PQ this dependence has a symmetric two-well form, i.e. the hydrogen bond is formed. For neutral and doubly reduced PQ, the curve is also two-well but asymmetric, so that the proton is bound to His or to PQ, correspondingly.On the basis of these results, we propose the following scheme of electron-proton coupling. Negatively charged oxygens of PQ form H-bonds with proton donor groups of the surrounding protein and fix PQ in its pocket. While the negative charges of oxygens increase after quinone reduction, protons shift to PQ oxygens and form strong hydrogen bonds with them. Upon second PQ reduction, protons are torn away from surrounding amino acids and form covalent bonds with the quinol. Resulting PQH(2) detaches from its binding place and is replaced by a neutral PQ. The lacking protons on amino acids in the Q(B) pocket are replaced by a step-by-step transfer from the stroma bulk through the proton channels.  相似文献   

9.
Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is employed to measure the strength of the hyperfine coupling of magnetic nuclei to the paramagnetic (S = 1/2) S2 form of photosystem II (PSII). Previous X-band-frequency ESEEM studies indicated that one or more histidine nitrogens are electronically coupled to the tetranuclear manganese cluster in the S2 state of PSII. However, the spectral resolution was relatively poor at the approximately 9 GHz excitation frequency, precluding any in-depth analysis of the corresponding bonding interaction between the detected histidine and the manganese cluster. Here we report ESEEM experiments using higher X-, P-, and Ka-band microwave frequencies to target PSII membranes isolated from spinach. The X- to P-band ESEEM spectra suffer from the same poor resolution as that observed in previous experiments, while the Ka-band spectra show remarkably well-resolved features that allow for the direct determination of the nuclear quadrupolar couplings for a single I = 1(14)N nucleus. The Ka-band results demonstrate that at an applied field of 1.1 T we are much closer to the exact cancellation limit (alpha iso = 2nu(14)N) that optimizes ESEEM spectra. These results reveal hyperfine (alpha iso = 7.3 +/- 0.20 MHz and alpha dip = 0.50 +/- 0.10 MHz) and nuclear quadrupolar (e(2)qQ = 1.98 +/- 0.05 MHz and eta = 0.84 +/- 0.06) couplings for a single (14)N nucleus magnetically coupled to the manganese cluster in the S 2 state of PSII. These values are compared to the histidine imidazole nitrogen hyperfine and nuclear quadrupolar couplings found in superoxidized manganese catalase as well as (14)N couplings in relevant manganese model complexes.  相似文献   

10.
Among the photomorphological responses in plants induced by ultraviolet-B radiation (UVB; 290 nm-320 nm) are leaf asymmetry, leaf thickening and cotyledon curling. We constructed an action spectrum of cotyledon curling in light-grown Brassica napus to characterize the UVB photoreceptor that initiates this response. Cotyledon curling was also characterized in Arabidopsis thaliana. Peak efficiency for this response occurred between 285 and 290 nm. Additionally, UVB-induced changes in epidermal cells from A. thaliana cotyledons were assessed because they are the likely site of UVB photoreception that leads to curling. Investigation of cellular structure, chlorophyll a fluorescence and chlorophyll concentration indicated that cotyledon curling is not concomitant with gross cellular damage or inhibition of photosynthesis, which only occurred in response to wavelengths <280 nm. Many UVB effects are apparently an indirect consequence of UVB radiation, dependent on UVB-mediated increases in reactive oxygen species (ROS) that either act as a signal in the UVB transduction pathway or cause oxidative damage. The cotyledon curling response was impeded by ascorbate and cystine, ROS scavengers and was promoted by H(2)O(2), a ROS. We suggest that following absorption by a UVB chromophore, ROS are generated via photosensitization, ultimately leading to cotyledon curling.  相似文献   

11.
12.
The protective action of co-solutes, such as sucrose and glycinebetaine, against the thermal inactivation of photosystem II function was studied in untreated and Mn-depleted photosystem II preparations. It was shown that, in addition to the reactions that depend on the oxygen evolving activity of the photosystem, those that implicate more intimately the reaction center itself are protected by high concentrations of osmolytes. However, the temperature required to inhibit oxygen evolution totally in the presence of osmolytes is lower than that required to eliminate reactions, such as P680 (primary electron donor in photosystem II) photo-oxidation and pheophytin photo reduetion, which only involve charge separation and primary electron transport processes. The energy storage measured from the thermal dissipation yield during photoacoustic experiments and the yield of variable fluorescence are also protected to a significant degree (up to 30%) at temperatures at which oxygen evolution is totally inhibited. It is suggested that a cyclic electron transport reaction around photosystem II may be preserved under these conditions and may be responsible for the energy storage measured at relatively high temperatures. This interpretation is also supported by thermoluminescence data involving the recombination between reduced electron acceptors and oxidized electron donors at - 30 and - 55 °C. The data also imply that a high concentration of osmolyte allows the stabilization of the photosystem core complex together with the oxygen-evolving complex. The stabilization effect is understood in terms of the minimization of protein-water interactions as proposed by the theory of Arakawa and Timasheff (Biophys. J., 47 (1985) 411--414).  相似文献   

13.
利用量子化学DFT从头计算方法,计算经过突变的细菌光合反应中心HM202L原始电子给体和其他色素分子的电子结构,然后对其原初电子转移机理进行探讨。结果表明:1)超分子D-2A的HOMO主要是由定域在其组成单元BChl~L分子上的原子轨道组成,而它的LUMO主要是由定域在其组成单元MBPheo~M分子上的原子轨道组成。这表明它在基态的激发态时分别存在超分子内的电荷分离态[BChl~L^--MBPheo~M^+]和[BChl~L^+-MBPheo~M^-]。同时也说明了D-2A阳离子态的正电荷完全分布在组成单元细菌叶绿素分子BChl~L上,与实验事实相符。2)HM202L细菌光合反应中心原初电子转移反应存在由ABCha~L^h^*驱动的电子转移反应。  相似文献   

14.
Results of simulation of electron and proton transport in higher plant chloroplasts, taking into account the lateral heterogeneity of their lamellar system, were summarized. The existence of heterogeneous lateral profiles of pH inside thylakoids and in gaps between the thylakoids of grana was predicted. The basic kinetic relationships were simulated for photoinduced redox transformations of P700, the primary electron donor for PS1. It was shown that, along with changes in pH inside thylakoids, an essential role in controlling the electron transport in chloroplasts can belong to alkalinization of the gap between thylakoids of grana, caused by deceleration of diffusion of hydrogen ions from the stroma to the PS2 complexes in thylakoids of grana.  相似文献   

15.
Lifetime-resolved imaging measurements of chlorophyll a fluorescence were made on leaves of avocado plants to study whether rapidly reversible ΔpH-dependent (transthylakoid H(+) concentration gradient) thermal energy dissipation (qE) and slowly reversible ΔpH-independent fluorescence quenching (qI) are modulated by lutein-epoxide and violaxanthin cycles operating in parallel. Under normal conditions (without inhibitors), analysis of the chlorophyll a fluorescence lifetime data revealed two major lifetime pools (1.5 and 0.5 ns) for photosystem II during the ΔpH build-up under illumination. Formation of the 0.5-ns pool upon illumination was correlated with dark-retention of antheraxanthin and photo-converted lutein in leaves. Interconversion between the 1.5- and 0.5-ns lifetime pools took place during the slow part of the chlorophyll a fluorescence transient: first from 1.5 ns to 0.5 ns in the P-to-S phase, then back from 0.5 ns to 1.5 ns in the S-to-M phase. When linear electron transport and the resulting ΔpH build-up were inhibited by treatment with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), the major fluorescence intensity was due to a 2.2-ns lifetime pool with a minor faster contribution of approximately 0.7 ns. In the presence of DCMU, neither the intensity nor the lifetimes of fluorescence were affected by antheraxanthin and photo-converted lutein. Thus, we conclude that both antheraxanthin and photo-converted lutein are able to enhance ΔpH-dependent qE processes that are associated with the 0.5-ns lifetime pool. However, unlike zeaxanthin, retention of antheraxanthin and photo-converted lutein may not by itself stabilize quenching or cause qI.  相似文献   

16.
Glucosinolates, specialized metabolites of the Brassicales including Brassica crops and Arabidopsis thaliana, have attracted considerable interest as chemical defenses and health-promoting compounds. Their biological activities are mostly due to breakdown products formed upon mixing with co-occurring myrosinases and specifier proteins, which can result in multiple products with differing properties, even from a single glucosinolate. Whereas product profiles of aliphatic glucosinolates have frequently been reported, indole glucosinolate breakdown may result in complex mixtures, the analysis of which challenging. The aim of this study was to assess the breakdown of indole glucosinolates in A. thaliana root and rosette homogenates and to test the impact of nitrile-specifier proteins (NSPs) on product profiles. To develop a GC-MS-method for quantification of carbinols and nitriles derived from three prominent indole glucosinolates, we synthesized standards, established derivatization conditions, determined relative response factors and evaluated applicability of the method to plant homogenates. We show that carbinols are more dominant among the detected products in rosette than in root homogenates of wild-type and NSP1- or NSP3-deficient mutants. NSP1 is solely responsible for nitrile formation in rosette homogenates and is the major NSP for indolic nitrile formation in root homogenates, with no contribution from NSP3. These results will contribute to the understanding of the roles of NSPs in plants.  相似文献   

17.
Extensive quantum chemical DFT calculations were performed on the high-resolution (1.9 ?) crystal structure of photosystem II in order to determine the protonation pattern and the oxidation states of the oxygen-evolving Mn cluster. First, our data suggest that the experimental structure is not in the S(1)-state. Second, a rather complete set of possible protonation patterns is studied, resulting in very few alternative protonation patterns whose relevance is discussed. Finally, we show that the experimental structure is a mixture of states containing highly reduced forms, with the largest contribution (almost 60%) from the S(-3)-state, Mn(II,II,III,III).  相似文献   

18.
Fluorescence induction curves (F(t)) in low intensity 1s light pulses have been measured in leaf discs in the presence and absence of valinomycin (VMC). Addition of VMC causes: (i) no effect on the initial fluorescence level Fo and the initial (O-J) phase of F(t) in the 0.01-1 ms time range. (ii) An approximately 10% decrease in the maximal fluorescence Fm in the light reached at the P level in the O-J-I-P induction curve. (iii) Nearly twofold increase in the rate and extent of the F(t) rise in the J-I phase in the 1-50 ms time range. (iv) A 60-70% decrease in the rise (I-P phase) in the 50-1000 ms time range with no appreciable effect, if at all, on the rate. System analysis of F(t) in terms of rate constants of electron transfer at donor and acceptor sides have been done using the Three State Trapping Model (TSTM). This reveals that VMC causes: (i) no, or very little effect on rate constants of e-transfer reactions powered by PSII. (ii) A manifold lower rate constant of radical pair recombination (k(-1)) in the light as compared to that in the control. The low rate constant of radical pair recombination in the reaction center (RC) in the presence of VMC is reflected by a substantial increase in the nonzero trapping efficiency in RCs in which the primary quinone acceptor (Q(A)) is reduced (semi-open centers). This causes an increase in their rate of closure and in the overall trapping efficiency. Data suggest evidence that membrane chaotropic agents like VMC abolish the stimulation of the rate constant of radical pair recombination by light. This light stimulation that becomes apparent as an increase in Fo has been documented before [Biophys. J. 79 (2000) 26]. It has been ascribed to effects of (changes in) local electric fields in the vicinity of the RC. The decrease of the I-P phase is attributed to a decrease in the photoelectric trans-thylakoid potential in the presence of VMC. Such effects have been hypothesized and illustrated.  相似文献   

19.
The temperature dependence of parameters of light-induced changes in millisecond delayed luminescence (half-width of the maximum, maximal and steady-state luminescence intensity) is studied within the temperature range from -23 to 45 degrees C in leaf segments of Chinese rose (Hibiscus rosa sinensis). Delayed luminescence (DL) is induced and registered by a homemade setup based on a Lewis-Kasha-type phosphoroscope. The temperature dependence of steady-state luminescence intensity is shown to have two maxima, at -10 and 35 degrees C. At room temperatures, the steady-state value of luminescence intensity is minimal, and its value correlates with the temperature tolerance of the plant. Depending on cooling and heating regimes, the DL steady-state value vs. temperature curves is found to be different. We suppose this effect to be caused by temperature-induced destructive changes in the structure of photosystem 2 reaction centre and probably by salting out.  相似文献   

20.
An ultrathin, ordered, and packed protein film, consisting of the 2-mercaptoacetic acid (MAA), polydimethyldiallylammonium chloride (PDDA), and wild-type (WT) photosynthetic reaction center (RC; termed as WT-RC) or its pheophytin (Phe)-replaced counterpart (termed as Phe-RC), was fabricated by self-assembling technique onto gold electrode for facilitating the electron transfer (ET) between RC and the electrode surface. Near-infrared (NIR)-visible (Vis) absorption and fluorescence (FL) emission spectra revealed the influence of pigment substitution on the cofactors arrangement and excitation relaxation of the proteins, respectively. Square wave voltammetry (SWV) and photoelectric tests were employed to systematically address the differences between the WT-RC films and mutant ones on the direct and photo-induced ET. The electrochemical results demonstrated that ET initiated by the oxidation of the primary donor (P) was obviously slowed down, and the formed P+ had more population as well as more positive redox potential in the Phe-RC films compared with those in the WT ones. The photoelectrochemical results displayed the dramatically enhanced photoelectric performances of the mutant ones, further suggesting the slow-down formation of final charge-separated state in Phe-RC. The functionalized protein films introduced in this paper provided an efficient approach to sensitively probe the redox cofactors and ET differences resulting from only minor changes in pigment arrangement in the pigment–protein complex. The favored ET process observed for the membrane proteins RC was potentially valuable for a deep understanding of the multi-step biological ET process and development of versatile bioelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号