首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Nucleolin and its homologues are multifunctional proteins which reside mainly in nucleoli of yeast, animal and plant cells. Hence, they are generally implicated in many stages of ribosome biosynthesis. In this study nucleolin was identified in root meristematic cell nucleoli of soybean plants subjected to chilling stress, recovered after chilling and under control conditions with the use of the immunogold electron microscopy technique. Soybean nucleoli exhibited various metabolic activities under these conditions (St?piński, 2004). Current studies showed that the level of nucleolin, expressed as a number of gold grains per μm2, varied in particular subnucleolar regions in the soybean root meristematic cell nucleoli. Labeling density changed in these regions when plants were subjected to the given treatment. Most abundantly this protein was present in dense fibrillar component (DFC) around fibrillar centers (FCs) in the nucleoli of recovered plants, while in the nucleoli of stressed plants this region contained the lowest level of nucleolin. It can be supposed that nucleolin participates in ribosome biogenesis and its level is correlated with metabolic activity of soybean nucleoli – the more active nucleoli, the higher level of nucleolin and vice versa.  相似文献   

2.
To investigate the correlation between subnucleolar structure and function, the precise distribution and configuration of nucleolar DNA during the cell cycle of Allium sativum were determined using the NAMA-Ur DNA-specific staining technique. We showed that nucleolar DNA is present in two forms: compacted chromatin clumps and a decondensed DNA cloud. The form of the DNA within the nucleolus varied greatly as the cell cycle progressed. During telophase, chromosomes extended into the prenucleolar body. In early G1 phase, DNA was only located in the fibrillar centers in the form of the condensed chromatin clump, while in mid-G1, S and G2 phases, the two forms of DNA were distributed in the fibrillar centers (FC) and dense fibrillar component (DFC). In prophase of mitosis, nucleolar DNA, along with FC and DFC, was linked into a network structure and condensed into a large chromatin clump. The area of the DNA cloud in the dense fibrillar component changed during different phases of the cell cycle. Our results demonstrated that the configuration of nucleolar DNA undergoes a series of decondensations and condensations during the cell cycle to fulfill the function of the nucleoli during the different phases.  相似文献   

3.
In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27 mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5 mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3 wt% and molar ratio of oil to methanol of 1:10 at 50 °C with 12,000 rpm as the speed of rotation in 30 min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1 wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30 min) and from WCO as 88% (30 min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2–3 h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts.  相似文献   

4.
The influence of high-intensity ultrasound (HIU) on the technofunctional properties and structure of jackfruit seed protein isolate (JSPI) was investigated. Protein solutions (10%, w/v) were sonicated for 15 min at 20 kHz to the following levels of power output: 200, 400, and 600 W (pulse duration: on-time, 5 s; off-time 1 s). Compared with untreated JSPI, HIU at 200 W and 400 W improved the oil holding capacity (OHC) and emulsifying capacity (EC), but the emulsifying activity (EA) and emulsion stability (ES) increased at 400 W and 600 W. The foaming capacity (FC) increased after all HIU treatments, as opposed to the water holding capacity (WHC), least gelation concentration (LGC), and foaming stability (FS), which all decreased except at pH 4 for FS. Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (Tricine-SDS-PAGE) showed changes in the molecular weight of protein fractions after HIU treatment. Scanning electron microscopy (SEM) demonstrated that HIU disrupted the microstructure of JSPI, exhibiting larger aggregates. Surface hydrophobicity and protein solubility of the JSPI dispersions were enhanced after ultrasonication, which increased the destruction of internal hydrophobic interactions of protein molecules and accelerated the molecular motion of proteins to cause protein aggregation. These changes in the technofunctional and structural properties of JSPI could meet the complex needs of manufactured food products.  相似文献   

5.
A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography – diode array detector – mass spectroscopy (UPLC–DAD–MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm?2, temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene.  相似文献   

6.
In this paper, we compare and contrast the processes of nucleation and subsequent growth of single-atom wide metal chains formed when group III metals (Al, Ga, In) are deposited onto Si(1 0 0) at room-temperature (RT). Employing Density Functional Theory (DFT) calculations, diffusion pathways on Si(1 0 0) surface are identified and their associated activation barriers are calculated. Then, the relative stabilities of various C-defect-pinned chains are examined by comparing the relevant adsorption energies. We also account for the observation that defect-nucleated chains grow on only one side of a C-defect by showing that the latter’s presence breaks the symmetry between the two previously equivalent binding sites on either side and rendering one much more stable than the other. Next, a growth model tailored for each group III metal/Si(1 0 0) system and incorporating the above results was simulated using Kinetic Monte Carlo (KMC) techniques to show that the surface morphologies generated by this model accurately reflect the observed ratio of homogeneously to heterogeneously nucleated chains. Finally, we examine through KMC simulations the consequences of the contrasting roles of a defect on In/Si(1 0 0) and Al/Si(1 0 0) – it captures adatoms in the former while it merely blocks direct adatom diffusion in the latter – on key quantities such as the mean island density.  相似文献   

7.
Klaus Christmann 《Surface science》2009,603(10-12):1405-1414
Some selected aspects of hydrogen interaction with metal surfaces are surveyed with emphasis on the formation of molecular precursor states on surfaces that are normally known to readily and spontaneously dissociate hydrogen molecules (Ni, Pd, Rh). We will demonstrate that the crystallographic (2 1 0) orientation of the face-centered cubic (“f.c.c”) lattice seems to provide a particular route for stabilizing a (weakly) chemisorbed H2 species notwithstanding the ordinary H2 dissociative chemisorption and – in the Pd case – subsurface H state formation. This molecular hydrogen species – although or just because it is bound with an adsorption energy of merely ~20–25 kJ/mole may play an essential role both in heterogeneously catalysed surface and hydrogen uptake reactions that precede, e.g., H storage in solid materials.  相似文献   

8.
This work is focused on the optimization of the ultrasound-assisted extraction of antioxidant compounds with photoprotective effect from palm pressed fiber. The influence of ultrasound intensity and pulse cycle was investigated by means of a central composite rotational design. The optimized condition was ultrasound intensity of 120 W.cm−2 and pulse factor of 0.4, yielding 3.24 wt%. Compounds such as fatty acids, β-sitosterol, α-tocopherol, squalene, total phenolics and carotene were identified. The extract presented antioxidant activity towards synthetic (2,2-diphenyl-1-picrylhydrazyl – DPPH, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) – ABTS) and biological radicals (Hydroxyl – OH), besides a sun protection factor of 15.01. Polar extracts from palm pressed fiber are promising candidates for use in cosmetic and pharmaceutical formulation since they present high antioxidant activity towards different radicals, combined with the high sun protection factor.  相似文献   

9.
The growth of para-sexiphenyl (6P) thin films as a function of substrate temperature on Ir{111} supported graphene flakes has been studied in real-time with Low Energy Electron Microscopy (LEEM). Micro Low Energy Electron Diffraction (μLEED) has been used to determine the structure of the different 6P features formed on the surface. We observe the nucleation and growth of a wetting layer consisting of lying molecules in the initial stages of growth. Graphene defects – wrinkles – are found to be preferential sites for the nucleation of the wetting layer and of the 6P needles that grow on top of the wetting layer in the later stages of deposition. The molecular structure of the wetting layer and needles is found to be similar. As a result, only a limited number of growth directions are observed for the needles. In contrast, on the bare Ir{111} surface 6P molecules assume an upright orientation. The formation of ramified islands is observed on the bare Ir{111} surface at 320 K and 352 K, whereas at 405 K the formation of a continuous layer of upright standing molecules growing in a step flow like manner is observed.  相似文献   

10.
Soldered joints of Bi-2223/Ag-sheathed high temperature superconducting multifilamentary tapes were fabricated using 63 wt.%Sn–34 wt.%Pb–1 wt.%Bi–2 wt.%Ag paste. The soldered joints were observed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Moreover, the electrical properties of joints were evaluated by current–voltage curves, and the tensile strengths of the joints were also tested. The results show that the soldered joint consists of Ag sheath – Ag3Sn compound layer – PbSn2 and Ag3Sn solder layer – Ag3Sn compound layer – Ag sheath. The joints are obeyed with Ohms Law and the magnitude of the joint resistance, which deceases with the increase of the overlap length, can reach the order of 10?8 Ω. The tensile strength of the joints with a brittle fracture mode is a little lower than that of the original tapes.  相似文献   

11.
The application of ultrasonic irradiation (40 KHz, 120 W) in the enzymatic extraction of bovine tendon collagen has been investigated. Our results show that using the ultrasonic irradiation increases the yield of collagen up to ~124% and significantly shortens the extraction time in comparison with the conventional pepsin isolation method. Such improvements are attributed to the enhancement of the enzyme activity and the dissolution of collagen substrate because the ultrasonic irradiation disperses the pepsin aggregates and opens up the collagen fibrils, thus the enzymatic hydrolysis is facilitated. AFM imaging shows the same fibrillar structure of tendon collagens generated from both the methods. The CD and FT-IR measurements reveal that the triple helix structure of collagen remains intact even after the ultrasonic irradiation. This study shows that the mild ultrasound irradiation can effectively improve the efficiency of pepsin extraction of natural collagen without any compromise of the resultant collagen quality.  相似文献   

12.
Fast atoms with energies from 300 eV up to 1.7 keV are scattered under a grazing angle of incidence from a clean and flat Ni(1 1 0) surface. For scattering under ”axial surface channeling” conditions, we observe – as reported recently for insulator and semiconductor surfaces – defined diffraction patterns in the angular intensity distributions for scattered fast 3He and 4He atoms. We have investigated the domain of scattering conditions where decoherence phenomena are sufficiently small in order to observe for metal targets quantum scattering of fast atomic projectiles. As a consequence, fast atom diffraction appears to be a general technique with a wide range of applicability in surface science.  相似文献   

13.
Membrane vesicles (MV) have been identified in seminal plasma from various species and they are thought to have a significant impact on semen quality and fertilisation. Although recently presence of MV has been also described in the canine ejaculate, detailed knowledge on their morphology is missing by now. This is, however, needed to provide a basis for detailed biochemical and functional studies as it is generally assumed that different MV populations are responsible for distinct tasks. MV were prepared for light (LM) and transmission electron microscopy (TEM) analysis using samples from normospermic dogs (n = 15), hypokinozoospermic dogs (n = 2, h) and one castrated azoospermic dog (a). For TEM, a new preparation protocol was used resulting in a higher MV retrieval rate. Using fractionated semen samples, most MV were identified in the second (sperm-rich) fraction in LM. Using pooled ejaculates, three different MV types could be identified in LM: (1) large MV with a marginal accumulation of opaque, granulated material, (2) medium- to small size MV with dense, opaque content and (3) small MV with no further defined contents. No direct contact between sperm and MV could be visualised. In TEM, 11 different MV types were identified based on diameter, structure, contents and electron density of contents as well as presence, number and size of smaller MV inside the MV itself. In normospermic males, secondary vesicles (type i, H, K1/2) included smaller vesicles and had a weighted mean diameter of 409.46 nm; hereof types i, H and K1 were smaller (mean: 287.55 nm, range: 51.25–994.86 nm) and type K2 was larger (mean: 1746.43 nm, range: 1003.66–3289.34 nm). Primary vesicles (mean diameter: 135.29 nm) – without vesicles inside – were differentiated into larger MV (A, B, C1/2) with a mean diameter of 219.63 nm (range: 39.08–1300.13 nm) and small primary MV (F, G) with a mean diameter of 66.12 nm (range: 24.62–99.84 nm). Whereas all mentioned MV were round to oval and mostly double-, rarely multiple-membrane surrounded, one longish primary MV type (L) was identified. In general, small primary vesicles were most common independent of semen quality, but distribution frequency of vesicle types differed between normospermic, pathospermic dogs and the castrated male. Mean weighted diameter of MV was 195.14 nm (range: 24.62–3289.34 nm) in normospermic males with the maximum diameter being smaller in the other dogs (h: 2096.78 nm; a: 1314.06 nm). Our results provide new information about ultrastructure and distribution frequency of canine MV in normospermic males and point to possible differences in MVs depending on semen quality. They provide the basis for further detailed functional analysis of MV subpopulations. Furthermore, the presence of MV in the castrated azoospermic male confirms an at least partly prostatic origin of canine MV.  相似文献   

14.
We prepared highly flexible, transparent, conductive and antibacterial film by spin coating a silver nanowire suspension on a poly (ethylene terephthalate) (PET) substrate. The ZnO layer covered the conductive silver nanowire (AgNW) network to protect the metal nanowires from oxidization and enhance both wire-to-wire adhesion and wire-to-substrate adhesion. It is found that the number of AgNW coatings correlates with both the sheet resistance (Rs) and the transmittance of the AgNW/ZnO composite films. An excellent 92% optical transmittance in the visible range and a surface sheet resistance of only 9 Ω sq−1 has been achieved, respectively. Even after bending 1000 times (5 mm bending radius), we found no significant change in the sheet resistance or optical transmittance. The real-time sheet resistance measured as a function of bending radius also remains stable even at the smallest measured bending radius (1 mm). The AgNW/ZnO composite films also show antibacterial effects which could be useful for the fabrication of wearable electronic devices.  相似文献   

15.
The influence of the underlying interface on adsorption of cobalt (Co) is investigated by comparing the nucleation and growth of Co at room temperature on three carbon (C) surfaces, i.e. highly oriented pyrolytic graphite (HOPG), epitaxial graphene/SiC(0001) (hereafter abbreviated as EG) and precursor of EG i.e. C-rich (6√3 × 6√3)R30°/SiC(0001) (hereafter abbreviated as 6√3). On all three surfaces, Co adopts Volmer–Weber growth mode via formation of three-dimensional dome-shaped nanoclusters. Co clusters formed on 6√3 surface are smaller but denser than Co/HOPG or Co/EG. Scaling analysis reveals a critical nucleus size, i* = 1 (atom) and the smallest stable cluster (i* + 1) would be a dimer. Co/HOPG and Co/EG have the same order of magnitude for their cluster densities and sizes. Scaling analyses however show that the i* for Co/EG (i* = 3) is larger than Co/HOPG (i* = 0) and in this respect the smallest stable cluster would be tetramer and monomer respectively. This difference is attributed to the influence of an interface situated between graphene and SiC bulk. It appears that EG is more inert than HOPG towards the adsorption of Co and may act as a better substrate to host Co clusters.  相似文献   

16.
Polysaccharides of β-d-glucan configuration have well-known antioxidant activity against reactive free radicals generated from the oxidation of metabolic processes. In this study, β-d-glucan-polysaccharides extracted from Ganoderma lucidum were incorporated in palm olein based nanoemulsions which act as carrier systems to enhance the delivery and bioactivity of these polysaccharides and could be potentially useful for skin care applications. Initially response surface statistical design (Central Composite Design – CCD) was subjected to optimize the formulation variables of oil-in-water (O/W) nanoemulsions induced by ultrasound. The optimal formulation variables as predicted by CCD resulted in considerably improving the physical characteristics of ultrasonically formulated nanoemulsions by minimizing their droplet size, polydispersity index and viscosity. Moreover, the β-d-glucan-loaded nanoemulsions exhibited good stability over 90 days under different storage conditions (4 °C and 25 °C). The studies using palm olein based β-d-glucan-loaded nanoemulsion generated using ultrasound confirm higher antioxidant activity as compared to free β-d-glucan.  相似文献   

17.
We present joint experimental and theoretical results on the elastic scattering of spin-polarized electrons from an epitaxial Au film on a W(110) substrate in the energy range from 8 eV to 27 eV. A time-of-flight technique with a position-sensitive detector is applied to measure secondary emission spectra for spin-up and spin-down primary electrons in a specular geometry. The spin-asymmetry of coherently scattered electrons is obtained by selecting the diffraction spot on the detector. Regions of large asymmetries – with a maximum of about ?60 % – are identified for electron energies of about 14 eV. Relativistic multiple-scattering calculations produce spin-orbit-induced asymmetries which are in agreement with their experimental counterparts. They further reveal that large asymmetries are associated with high intensities. This offers the possibility of an efficient new spin polarimeter with a figure of merit of about 1.5 · 10?2.  相似文献   

18.
The reaction of PdCl2 with anticancer-alkylating agent mechlorethamine hydrochloride (CH3NH(C2H4Cl)2 = HN2 x HCl), in the molar ratio 1:2, affords the complex [CH3NH(C2H4Cl)2]2[PdCl4] ([H2N2]2[PdCl4]). Novel Pd(II) complex and the complex precursor mechlorethamine hydrochloride were tested for their antiradical property. Both present weak interaction with 2, 29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS). Assays with soybean lipoxygenase and with superoxide anion radicals in vitro showed very high radical scavenging activity of the complex, whereas the complex precursor mechlorethamine hydrochloride presents lower inhibition. Hydrolytic activity of new complex with N-acetylhistidylglycine (AcHis–Gly) was also studied. It was established that regioselective cleavage of the amide bond of the investigated dipeptide had occurred after heating at 60 °C and at pH = 1.5 for 36 h.  相似文献   

19.
Fluid-structure interaction (FSI) modelling can involve large deformations in the fluid domain, which could lead to degenerating mesh quality and numerical inaccuracies or instabilities, if allowed to amplify unchecked. Complete remeshing of the entire domain during the solution process is computationally expensive, and can require interpolation of solution variables between meshes. As an alternative, we investigate a local remeshing algorithm, with two emphases: (a) the identification and remedy of flat, degenerate tetrahedra, and (b) the avoidance of node motion, and hence associated interpolation errors.Initially, possible topological changes are examined using a dynamic programming algorithm to maximise the minimum local element quality through edge reconnection. In the 3D situation it was found that reconnection improvements tend to be limited to long edges, and those with few (three or four) element neighbours. The remaining degenerate elements are classified into one of four types using three proposed metrics – the minimum edge-to-edge distance (EE), the minimum node-to-edge distance (NE), and the shortest edge length (SE) – and removed according to the best manner for their type. Optimised thresholds for identifying and classifying elements for removal were found to be EE < 0.18, NE < 0.21, SE < 0.2.  相似文献   

20.
Pyrazolo[1,5-a]pyrimidines were synthesized via the ultrasonic sonochemical method using the cyclocondensation reaction of 4-alkoxy-1,1,1-trifluoro-3-alken-2-ones [CF3C(O)CH = C(R)(OMe) – where R = Me, Bu, i-Bu, Ph, 4-Me–C6H4, 4-F–C6H4, 4-Cl–C6H4, 4-Br–C6H4, naphth-2-yl and biphen-4-yl] – with 3-amino-5-methyl-1H-pyrazole in the presence of EtOH for 5 min. This methodology has several advantages, for example, it is a simple procedure, it has an easy work-up, mild conditions, short reaction times (5 min) and produces satisfactory yields (61–98%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号