首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxo-degradation process of polypropylene (PP) samples containing different concentrations (4% and 10% w/w) of pro-oxidant/pro-degradant additive Envirocare™ AG1000C was investigated under accelerated test conditions. Samples were initially exposed to UV radiation for 300 h. The tendency to biodegradation in soil medium of these UV-aged samples was then indirectly assessed by an indirect method for a period of 6 months. The entire degradation process of these materials was first examined by monitoring changes in their morphological properties (melting temperature, maximum lamellar thickness and crystallinity) with the ageing time, by Differential Scanning Calorimetry (DSC). Then, changes in the thermal properties (onset temperature and maximum decomposition temperature) of these materials with the ageing time were analysed by Thermogravimetric Analysis (TGA). Furthermore, the kinetics of the thermal decomposition of these PP samples with pro-oxidant/pro-degradant was also studied during the oxo-degradation process, by means of the Chang differential method. During exposure to UV radiation, the more significant changes in the morphological and thermal properties that were detected in PP samples containing pro-oxidant/pro-degradant additive compared to pure PP, clearly suggest a higher level of oxidation in these samples, confirming the effectiveness of this pro-oxidant/pro-degradant additive in promoting the abiotic oxidation of polypropylene during UV-irradiation. Moreover, the level of oxidation observed in UV-aged samples seems to be dependent on the additive load.  相似文献   

2.
A novel UV-curable hyperbranched polyurethane acrylate (HUA) was synthesized and found to polymerize rapidly in the presence of 5 wt.% benzophenone in N2 under UV exposure. The photopolymerization kinetics of HUA was studied by differential photocalorimetry (DPC). Its toughening effect for polypropylene (PP) was investigated by tensile and impact tests of the UV irradiated PP/HUA blends. The morphological structures and thermal behavior were determined by polarized optical microscopy, scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The obtained results demonstrate that (1) the maximum photopolymerization rate increases with raising temperature up to 140 °C, whereas decreases at above 150 °C. The activation energy of 19 kJ mol−1 for the photopolymerization was obtained at below 140 °C from the Arrhenius plot, while it is negative at above 150 °C. (2) The incorporation of 5 wt.% HUA greatly improved the notched impact strength of PP matrix with a slight improvement in the tensile strength and without obvious decline in breaking elongation. These results correlate well with SEM observation. (3) During the UV irradiation of PP/HUA blends, PP can be crosslinked/grafted with the cured HUA particles, resulting in the increase of the impact strength of PP matrix. (4) The cured HUA particles in the PP/HUA blends act as heterogeneous nucleation agent for PP, which results in the decrease of spherulite size and less perfection of PP crystals.  相似文献   

3.
In this comparative study, the effect of gamma rays on the ageing characteristics of poly(ethylene-co-vinyl acetate) (EVA) and poly(ethylene-co-vinyl acetate)/carbon black mixture (EVA/CB) was investigated in terms of thermal stability. EVA, containing 13% vinyl acetate (VA), and EVA/CB, containing 13% VA and 1% carbon black (CB), were aged at 85°C in air up to 30 weeks for thermal ageing. Same substances were aged by means of UV light with a wavelength in the vicinity of 259 nm, in air, up to 400 h for UV ageing. Same substances were also irradiated with gamma rays at ambient conditions up to 400 kGy. Following these experiments, samples which had been irradiated with gamma rays, were subjected to thermal and UV ageing under the same conditions as for unirradiated samples. Dynamic thermogravimetry studies were performed for determination of the thermal stabilities of the samples. 10 and 50% mass losses were calculated for the samples from their respective curves. As a result of thermal analysis experiments, it was found that CB dramatically loses its protective property against thermal ageing of EVA after gamma irradiation. On the other hand, gamma irradiation does not have any significant effect on the UV ageing characteristics of EVA and EVA/CB in terms of thermal stability.  相似文献   

4.
In this article, the composites based on long glass fibre reinforced polypropylene/intumescent flame retardant (LGFPP/IFR) were prepared by melt blending. The influence of thermal oxidative ageing on the LGFPP/IFR composites with different thermal oxidative ageing time at 140 °C was studied by means of oven heating. The thermal stability and flammability of the composites were respectively investigated by thermal gravimetric analysis (TG), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), scanning electronic microscopy (SEM), mechanical properties test and energy-dispersive X-ray analysis (EDAX). A trend of increase first and then decrease in LOI values was shown in 0–50 days ageing, with the same trend as thermal stability obtained from TG in nitrogen condition. The CCT results indicated that the LGFPP/IFR composites after ageing achieved a higher heat release rate, which means a higher fire risk. The mechanical properties showed a global decrease in just 10 days ageing. Morphologies obtained from SEM showed that both the rupture of PP matrix and fibre interface debonding led to the decrease in mechanical properties. The EDAX proved that IFR particles could emerge and gather on the surface of sample in ageing procedure, which had great effects on the thermal stability and flame retardancy of the composites.  相似文献   

5.
Production of high melt strength polypropylene by gamma irradiation   总被引:1,自引:0,他引:1  
High melt strength polypropylene (HMS-PP) has been recently developed and introduced in the market by the major international producers of polypropylene. Therefore, BRASKEM, the leading Brazilian PP producer, together with EMBRARAD, the leading Brazilian gamma irradiator, and the IPEN (Institute of Nuclear Energy and Research) worked to develop a national technology for the production of HMS-PP. One of the effective approaches to improve melt strength and extensibility is to add chain branches onto polypropylene backbone using gamma radiation. Branching and grafting result from the radical combinations during irradiation process. Crosslinking and main chain scission in the polymer structure are also obtained during this process. In this work, gamma irradiation technique was used to induce chemical changes in commercial polypropylene with two different monomers, Tri-allyl-isocyanurate (TAIC) and Tri-methylolpropane-trimethacrylate (TMPTMA), with concentration ranging from 1.5 to 5.0 mmol/100 g of polypropylene. These samples were irradiated with a 60Co source at dose of 20 kGy. It used two different methods of HMS-PP processing. The crosslinking of modified polymers was studied by measuring gel content melt flow rate and rheological properties like melt strength and drawability. It was observed that the reaction method and the monomer type have influenced the properties. However, the concentration variation of monomer has no effect.  相似文献   

6.
Electrically conductive polypropylene/graphite (PP/graphite) composites were prepared via blending granulated PP with maleic anhydride grafted PP and natural graphite. Electrical conductivity of prepared samples containing either 65, 70, or 75 wt% of graphite was measured and the most conductive sample containing 75 wt% of graphite was exposed to UV irradiation for 1 and 24 h or thermally treated at 170 °C for 1 h. The influence of thermal and UV exposure on the structural and electrical changes in such treated samples was studied. Local current measurements on the surface were made using scanning spreading resistance microscopy and morphology of the surface was studied by atomic force microscopy. X-ray diffraction analysis, infrared and Raman spectroscopy were also used for the structural characterization. Properties of treated and untreated samples are compared and differences are discussed.  相似文献   

7.
The objective of this work is the investigation of the nanogel and microgel formation in modified PP. The modified PP in pellets was synthesized by gamma irradiation of pristine PP under a crosslinking atmosphere of acetylene in dose of 5, 12.5 and 20 kGy, followed by thermal treatment for radical recombination and annihilation of the remaining radicals. The thin film gel of the polypropylenes was obtained by extraction in boiling xylene for period of 12 h at 138 °C, followed by decantation in beaker at room temperature of 25 °C with the total volatilization of the xylene and deposition of dried material film on glass substrate under agitation by Settling process. The thin film gel formed of pristine PP and modified PP (i.e., irradiated) was characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and differential scanning calorimetry (DSC). The PP morphology indicated the nanogels and microgel formation with increase of spherulitic concentration and crystallinity at dose of 12.5 kGy.  相似文献   

8.
The ageing of filled and cross-linked ethylene propylene diene elastomer (EPDM) has been studied under accelerated UV irradiation (λ ≥ 290 nm) at 60 °C, thermal ageing at 100 °C and in nitric acid vapours for different time intervals. Hardness measurements were performed. DSC-thermoporosimetry was used to estimate the mesh size distribution and cross-linking densities for each ageing. The development of functional groups was monitored by ATR spectroscopy. An increase in oxidation with exposure time after the different types of ageing was observed. The thermal stability of EPDM was assessed by TGA and evolved volatile gases were identified using FTIR spectroscopy.  相似文献   

9.
Thermal, chemical and rheological properties of ultraviolet aged asphalt binder were characterized by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) and dynamic shear rheometer (DSR), respectively. Asphalt binder samples were made with different film thickness (50, 100, 200 and 500 μm) and suffered different ageing time (0, 48, 96 and 144 h), at a certain UV radiant intensity of 20 w m–2 in a self-made accelerated ageing oven. The results indicate that the UV light ageing would lead to the improvement of thermal behavior and the growth of the glass transition temperature of asphalt binder. This type of ageing can be also reflected from the FTIR spectra in terms of the characteristic peaks of the carbonyl groups and sulphoxides. The UV light ageing can change some rheological parameters of asphalt binder, such as complex modulus and phase angle. The ageing degrees of asphalt binder by this type of ageing test are mainly related to the ageing time and film thickness of the sample.  相似文献   

10.
This research work deals with the effect of rare earth oxides on the PP matrix with respect to the thermal and mechanical properties and to the photo-degradation under UV irradiation exposure. The rare earth oxides are used as tracers for the identification of polymer materials, in order to have an economically efficient recycling and high speed automatic sorting of plastic wastes. The addition of 0.1 wt% of such particles of a micrometric size has a minor effect on the mechanical and thermal properties of the traced materials, as well as on the photo-degradation of the polymer after UV irradiation exposure. For 1 wt% tracer content, before UV irradiation treatment, the melting and crystallization temperatures as well as the thermal stability of the PP matrix are slightly increased, whereas the elongation at break decreases from 10 to 50% for a cross-head speed of 250 mm/min. However, the addition of 1 wt% of CeO2 improves the photo-degradation resistance of the PP matrix to UV exposure due to the UV light screening effects offered by these particles. The SEM images together with the results obtained from image processing show a homogenous dispersion of tracers in the PP matrix.  相似文献   

11.
Accelerated thermal and photo-aging of four homopolymers, low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and high-impact polystyrene (HIPS), was performed and the impact of subsequent reprocessing conditions on their properties studied. Polymer samples oven-aged at 100 °C for varying periods of time or UV irradiated in a Weather-o-meter (WOM) at λ = 340 nm were reprocessed in a Brabender plasticorder at 190 °C/60 rpm for 10 min. Chemical changes and the evolution of rheological and mechanical properties accompanying the gradual degradation of the individual polymers were monitored and evaluated (DSC, FTIR, colorimetric method, MFI, tensile impact strength). LDPE and HIPS were found to be more susceptible to thermo-oxidation than HDPE and PP, whereas HDPE and PP were affected to a greater extent by UV exposure; the crucial role here is being played by the stabilization of the studied resins. In HDPE the scission and crosslinking reactions competed both in thermo-and photo-degradation. In the case of LDPE, scission prevailed over branching during thermo-oxidation, whereas photo-oxidation of the same sample led predominantly to crosslinking. Abrupt deterioration of the LDPE rheological properties after one week of thermal exposure was suppressed by re-stabilization. The scission reaction was also predominant for PP during thermo-oxidation, and it took place even faster during UV exposure. In the case of HIPS a slight photo-degradation of PS matrix is accompanied by simultaneous crosslinking of the polybutadiene component.  相似文献   

12.
Ni containing layered double hydroxides (LDHs) have been prepared by precipitation and hydrothermally treated under microwave irradiation for different periods of time. The solids have been calcined at three temperatures corresponding to stable phases formed during thermal decomposition of LDHs. The properties of the irradiated samples and of the calcined products were studied in order to ascertain whether the ageing treatment under microwave irradiation modifies not only the properties of the layered materials, but also the properties of the calcined products. A structural and textural study was carried out by PXRD, FT-IR and Vis-UV spectroscopy, thermal analyses (DTA and TG), N2 adsorption/desorption at −196 °C and TEM microscopy; the reducibility of the nickel species was studied as well by TPR. The results show that the microwave treatment leads to better crystallized LDHs with modified thermal stability and reducibility. In addition, the degree of crystallinity of the layered precursors and their textural properties determine the properties of their thermal decomposition products.  相似文献   

13.
纳米TiO2表面接枝聚苯乙烯及其抗紫外老化研究   总被引:1,自引:0,他引:1  
徐立新  李为立  杨慕杰 《化学学报》2007,65(17):1917-1921
利用偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)对纳米TiO2进行表面预处理, 在此基础上通过分散聚合工艺制备聚苯乙烯(PSt)接枝包覆纳米TiO2. 运用红外光谱、热重分析及透射电镜对处理前后纳米TiO2进行了表征, 并通过紫外人工加速老化试验比较了表面处理前后纳米TiO2对聚丙烯/聚苯乙烯(PP/PSt)体系的抗紫外老化性能. 结果显示: KH570与纳米TiO2表面羟基进行了缩合, PSt在粒子表面实现了接枝聚合, 接枝率约为60% (w); PSt接枝包覆纳米TiO2呈均匀的微球形, 纳米TiO2被包覆于微球内部; PSt接枝包覆后纳米TiO2在PP/PSt中的分散效果较改性前有显著的改进, 其抗紫外老化性能明显优于改性前体系.  相似文献   

14.
Thin films of isotactic polypropylene (iPP) are of great economical importance and their production is quite challenging due to the need of very fast uniaxial or biaxial expansion. During the expansion, critical problems usually arise, like structure disruption, shear thinning, causing material, energy and time losses. This work aims to study the surface morphology and compare the thermal, mechanical properties of PP films irradiated by gamma ray in an acetylene atmosphere after uniaxial expansion. PP films were made by compression molding at 190 °C with cooling in water at room temperature and irradiated by gamma ray, at (5, 12.5 and 20 kGy) under acetylene atmosphere. After irradiation the samples were submitted to thermal treatment at 90 °C for 1 h and then stretched out at 170 °C using an Instron machine. The surface of PP films, pristine and modified, (i.e., irradiated), was studied using optical microscopy (OM) and scanning electron microscopy (SEM). The changes in morphology, crystallinity and tensile parameters, like yield stress, rupture stress and elongation strain of the PP with irradiation dose were investigated. The results showed some evidences of gel formation due to crosslinking and/or long chain branching induced by radiation.  相似文献   

15.
High-performance composites prepared by melt-blending polylactide (PLA, l/d isomer ratio of 96/4) with various amounts of β-anhydrite II (AII), the dehydrated form of calcium sulfate hemihydrate obtained by a specific thermal treatment at 500 °C, have been aged to study the evolution of their physical and mechanical properties with time. The effect of 1-year ageing under ambient conditions (below Tg of PLA) for selected composites, i.e., filled with 20 and 40 wt% AII, was determined and compared to unfilled PLA with the same processing and ageing history. Samples with an initial amorphous PLA matrix, obtained by fast quenching from the melt, were characterized before and during ageing. The changes in physical parameters have been studied using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and density measurements. Surprisingly, for all the samples, an increase of the storage modulus (E′) was recorded, as a result of ageing. This improvement was ascribed to the reorganization of the PLA structure induced by ageing. The structural reorganization was also reflected by a slight increase of PLA density and changes in thermal behaviour. The X-ray investigations showed unchanged crystallographic structure of AII both during blending with molten PLA and in the composite systems after ageing. The surprising stability of the thermo-mechanical properties of PLA and PLA/AII composites is in agreement with the results of size exclusion chromatography analysis (SEC) which did not show significant changes of PLA molecular weights brought out by ageing.  相似文献   

16.
Bitumen, as each organic substance, is a product which alters over time. Indeed, roads deteriorate under the effect of several phenomena. A number of studies have been undertaken to increase the quality of road's coating, mostly by adding polymer to bitumen. This work was based on the study, by electron paramagnetic resonance (EPR), FTIR and Synchronous UV fluorescence, of different base and modified bitumens after different treatments used to simulate the ageing (gamma irradiation, thermal treatment). Our purpose was to compare and correlate the results obtained by different techniques to improve the knowledge of bitumen's reactivity and evolution submitted to ageing phenomena.  相似文献   

17.
Thermal oxidation behavior of isotactic polypropylene (PP) films with and without nucleating agent was investigated at 100 °C in air. The crystal form of PP was modified with a specific aryl amide derivative as β-nucleating agent (β-NA). Fourier transform infrared spectroscopy (FTIR), polarized optical microscopy (POM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and tensile tests were performed to determine the extent of chemical degradation and the variations of microstructure of the two kinds of PP films during thermal oxidation. It was found that the mechanism of thermal oxidation of PP films was not changed in the presence of β-NA, but the time to initiation and the rate of oxidation both declined. Moreover, during the thermal oxidation aging, the melting temperature of neat PP significantly decreased while only a slight decrease of the melting temperature occurred for β-PP. Overall, the investigation indicated that the thermal oxidative stability of β-PP was higher than that of neat PP. The underlying mechanism was further analyzed by considering the change in the physical structure, especially the crystalline and the amorphous structure, of PP in the presence of β-NA.  相似文献   

18.
In this paper, combined moisture/ultraviolet (UV) weathering performance of unbleached and bleached Kraft wood fibre reinforced polypropylene (PP) composites was studied. Composites containing 40 wt% fibre with 3 wt% of a maleated polypropylene (MAPP) coupling agent were fabricated using extrusion followed by injection moulding. Composite mechanical properties were evaluated, before and after accelerated weathering for 1000 h, by tensile and impact testing. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were also carried out to assess the changes occurring during accelerated weathering. Bleached fibre composites initially showed higher tensile and impact strengths, as well as higher thermal stability and greater crystallinity. During accelerated weathering, both unbleached and bleached fibre composites reduced tensile strength (TS) and Young's modulus (YM), with the extent of the reduction found to be similar for both unbleached and bleached fibre composites. Evidence supported that the reduction of TS and YM was due to PP chain scission, degradation of lignin and reduced fibre-matrix interfacial bonding.  相似文献   

19.
Low flame retardant efficiency is a key bottleneck for currently available retardants against the flammable polypropylene (PP). Herein, the organically modified montmorillonite (OMMT) was utilized as a synergist for our previously reported intumescent flame retardant (IFR) that was constructed from ammonium polyphosphate (APP) and hyperbranched charring foaming agent (HCFA) to further enhance the retardant efficiency against PP. The resultant's combustion behavior was thoroughly investigated by cone calorimetry, limiting oxygen index (LOI), vertical burning test (UL‐94), and scanning electron microscopy (SEM). The results showed that 20% addition of IFR with OMMT showed a positive effect and improved the flame retardancy of the PP systems. Especially, addition of 2 wt% OMMT obviously increased the LOI values of PP systems with 20% total loading flame retardants from 29% to 31.5% and the samples meet V‐0 rating as well as the reduction of the heat release rate (HRR), total heat release (THR), CO2, and CO production occurred. On the other hand, the SEM images were also revealed that OMMT initiated a dense and strong char on the surface of the material, which resulted in efficient flame retardancy of PP matrix during combustion. In addition, thermal degradation behavior discussed by thermogravimetric analysis (TGA) indicated that OMMT could improve the thermal stability of PP systems under high temperature, and promoted char residues of PP/IFR systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In the present study, polypropylene/aluminium trihydroxide/Fe‐montmorillonite (PP/ATH/Fe‐MMT) nanocomposites were prepared by melt‐intercalation method. This was been designed to determine whether the presence of structural iron in the matrix could enhance the thermal stability and flammability of nanocomposites. In order to prove the effect of Fe3+ in the structural silicate layers, samples of PP/ATH and PP/ATH/Na‐MMT (no Fe3+ in structural silicate layers) were prepared under the same conditions. Fe‐MMT and Na‐MMT were modified by cetyltrimethyl ammonium bromide (CTAB). The nanocomposite structures were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) was applied to test the thermal properties of nanocomposites. In addition, the limiting oxygen index (LOI) of PP/ATH/Fe‐MMT nanocomposites was increased, and no dripping phenomenon was found through the UL‐94 vertical burning test. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号