首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlled rheology polypropylene grades are established commodities in the polymer processing market. However, new types, mainly the so-called high melt strength polypropylene (HMSPP) grades, are being introduced in the last two decades and radiation processing has played an important role. The melt strength properties of a polymer increases with molecular weight and with long-chain branching due to the increase in the entanglement level. As polypropylene (PP) is a linear polymer, the way to improve its elongational viscosity is by the production of a bi-modal polymer. Basell's patents claim the production of long-chain branching on PP by irradiating with electrons under oxygen free atmosphere, followed by two heating steps to allow radical recombination and annihilation reaction. Some other companies have issued patents using electron beam processing, but so far there is no actual production other than the Basell one. As a result of a research joint effort, IPEN, BRASKEM (the biggest Brazilian polymer producer) and EMBRARAD (the major Brazilian radiation processing center) developed a new process to produce HMSPP based on gamma processing. This paper will address some characteristics of each technology and the main industrial opportunities.  相似文献   

2.
聚合物长支链的流变学表征方法   总被引:2,自引:0,他引:2  
在聚合物中引入长支链能够显著地提高熔体强度,改善聚合物在拉伸流场中的加工性能,因此对长支链的表征显得十分重要。流变学被证实是一种非常有效且敏感的表征手段,近来受到普遍关注。本文总结了近年来国内外关于长支链聚合物流变学表征研究的最新进展,比较了不同类型流场下对长支链的流变学判断方法,尽量结合高分子链段分子结构解释了各种表征现象的含义,阐述了借助流变学对大分子拓扑结构的定性表征以及对长支链含量的定量表征方面的应用。  相似文献   

3.
Large enhancements of the melt strength of polypropylene (PP) were achieved by the introduction of high molecular weight polyethylene (PE) into PP. The viscoelastic properties of the high‐melt‐strength PP melts under shear flow were investigated. It was found that the rheological properties of the high‐melt‐strength PP were distinctly different from those of conventional PP. The elastic response at low frequencies was significantly enhanced in comparison with the conventional PP, implying a presence of a long relaxation time mode that was not revealed in conventional PP. In step‐shear measurements, the fast and slow relaxation processes that characterized the linear viscoelastic properties were observed also for nonlinear relaxation moduli. The dependence of the damping for the slow process of the high‐melt‐strength PP on shear strain was much weaker than that of the fast process. These rheological behaviors characterizing the long relaxation time mode were further enhanced with the increasing concentration of high molecular mass PE. The unusual shear rheological behaviors were discussed in view of the role of high molecular weight PE as a long relaxation time mode within PP. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2692–2704, 2001  相似文献   

4.
《先进技术聚合物》2018,29(8):2300-2307
Gel‐free long‐chain‐branched polypropylene (LCBPP) was prepared by the melt radical branching reaction in the presence of peroxide initiator 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy) hexane peroxide, zinc dimethyldithiocarbamate, and trimethylolpropane triacrylate in a torque rheometer. It could be inferred that recombination between PP chains via radical coupled reaction took place and trimethylolpropane triacrylate was grafted onto PP backbone by the torque curves and Fourier transformed infrared spectroscopy results. The presence of long chain branches (LCB) for modified PP was verified by the gel permeation chromatography measurements and vGP plots. On the other hand, it was found that the topological structure of PP chains transformed from linear form to a long star‐like shape during the reaction progress, and the topological structure was directly determined by the radical reaction time. The topological structure of PP would further impact its melt behaviour. After complete melting of raw PP, “sparse and long” LCBPP firstly generated which possessed high melt strength owing to the increasing entanglement of long branching chains. And at the time corresponding to the summit of reaction peak on the torque curve, the modified LCBPP possess the highest melt strength owing to its long star topological structure. While as reaction time was prolonged, severe degradation of the LCBPPs would take place under too long mixing time and “dense and short” branches generated due to the residual radicals, with a sharp decline in melt strength.  相似文献   

5.
A simple device was recently developed for fast sampling (within a few seconds) of representative melt samples (about 2 g) on a running extruder. An array of such devices has been mounted on a twin‐screw extruder. The goal of this study was to de‐black‐box reactive processing of polymers by studying some typical examples. ‐ Processing of polyolefins in the presence of peroxides: when the polymer is molten and the melt temperature is sufficiently high branching/cross‐linking of PE and degradation of PP occurs; the conversion follows a convex profile along the screw axis, which profile is similar to the exponential profile calculated for peroxide decomposition. ‐ Free‐radical grafting of maleic anhydride (MA) onto polyolefins: MA grafting onto PE and PP also follows a convex profile with branching/cross‐linking as parallel side reaction for PE and degradation for PP; for PE degradation of the formed grafted/cross‐linked gel is observed at the end of the extruder. ‐ Reactive blending of PA‐6 with EPM‐g‐MA: within a few seconds the in‐situ compatibilization reaction, resulting in PA‐6/EPM graft copolymers, is completed and the degree of rubber dispersion has changed from the mm to the sub‐μm range, regardless of the MA content of EPM‐g‐MA and the EPM‐g‐MA content of the blend; PA degradation occurs along the whole extruder.  相似文献   

6.
Summary : In this study, two different routes were chosen which are expected to influence the elongational viscosity and, thus, the foaming behavior of polypropylene (PP). Electron irradiation of a linear PP was performed at room temperature using different doses. Enhanced long-chain branching was observed with increased irradiation dose. In addition, a linear PP was filled with 5 wt% multiwalled carbon nanotubes (MWNT) by melt mixing at 200 °C. These modified PP materials were investigated with respect to their shear and elongational behavior. After foaming, irradiated PP led to an expansion factor which is about 60% higher than that of the non-irradiated product. In case of PP filled with 5 wt% MWNT the value of the expansion factor is about 70% higher than that of pure PP expanded under the same conditions. The cell structure is much finer in both cases as compared to unmodified PP.  相似文献   

7.
《先进技术聚合物》2018,29(1):551-559
Long‐chain–branched polypropylene (LCBPP) is one of polypropylenes (PPs) with high melt strength and good melt elasticity. Recently, due to its outstanding properties, LCBPP have been attracted increasingly attention in the field of development and characterization by the researchers all over the world. In this study, LCBPP was prepared by the melt radical branching reaction in a torque rheometer. The influences of various acrylate monomers with different functionality degrees on the structure and melt performance of PP products were investigated. The results indicated that grafting monomers with different functionality degrees made diverse influences on the branching density and branching chain length of branching PP products. With the increase of the functionality degree of grafting monomers, the branching level of PP products increased gradually and the “multiplicity” of branches became increasingly obvious. Besides, a higher reactivity of pentaerythritol triacrylate with hydroxyl than the similar molecular structured pentaerythritol tetraacrylate was confirmed. Furthermore, due to the high reactivity of dipentaerythritol penta(hexa)acrylate, branching and crosslinking reaction occurred simultaneously during the reaction process. As a result, the gel content increased and finally formed highly star branching structures with a shape of “dense and short.”  相似文献   

8.
An overview will be given on thermoplastic vulcanisates (TPVs). Like other thermoplastic elastomers, TPVs combine the elastic and mechanical properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. Emphasis will be on general-purpose TPVs, based on resol-cross-linked EPDM/PP/oil blends. The following recent scientific developments will be discussed in detail: resol cross-linking chemistry, extruder dynamic vulcanisation, TPV morphology, oil distribution, TPV elasticity model and TPV rheology. A series of scientific questions and technological problems, which are challenging future TPV developments, will be put forward at the end.  相似文献   

9.
Sub-micrometer (μm) thermoplastic vulcanizates (TPVs) with cross-linked rubber particles with sizes ranging from 70 to 400 nm were prepared by reaction-induced phase separation (RIPS) of initially miscible blends of poly(ethylene) (PE), lauryl methacrylate (LMA) and divinylbenzene (DVB). Cross-linking under static conditions led to (partial) connectivity of the rubber particles via chemical bridging of grafted PE chains. Dynamic preparation conditions caused the connected structure to break-up, which led to a significant enhancement of the mechanical properties and the melt processability. The addition of 25-80 wt% extender oil resulted in a reduced complex viscosity and yield stress in the melt, without deteriorating the mechanical properties. The relatively good elastic recovery and excellent ultimate properties of these high hardness TPVs may be explained by the sub-μm rubber dispersions.  相似文献   

10.
Xie  Jia-Yi  Wu  Yong-Shi  Yin  Ze-Feng  Yin  Liang-Dong  Xu  Rui-Jie  Lei  Cai-Hong 《高分子科学》2022,40(4):403-412

Due to the mechanical stability of the PP layer, the oriented PP/PE double-layer film with a row-nucleated crystalline structure can be annealed at a higher temperature than the PE monolayer film. In this work, the effects of annealing temperature within the melting range of PE on the crystalline structure and properties of PP/PE double-layer films were studied. When the annealing temperature is between 100 and 130 °C, below the melting point of PE, the crystallinity, the long period, lateral dimension and orientation of the lamellae in the PE layer increase with the annealing temperature due to the melting of thin lamellae and the self-nucleated effect of partially-melted melts during annealing. With the annealing temperature further increasing to 138 °C, near the melting ending point of PE, since the lamellae melt completely and the melt memory becomes weak during annealing, some spherulite structures are formed in the annealed sample, resulting in a decrease of orientation. In contrast, the annealing only causes the appearance of a low-temperature endothermic plateau in the PP layer. The improved size and orientation of lamellar structure in the PE layer increase the pore arrangement and porosity of the stretched PP/PE microporous membrane. This study successfully applies the self-nucleation effect of partially-melted polymer melt into the practical annealing process, which is helpful to guide the production of high-performance PP/PE/PP lithium batteries separator and the annealing process of other multilayer products.

  相似文献   

11.
Summary: A new class of fibre reinforced commodity thermoplastics suited for injection moulding and direct processing applications has been developed using man-made cellulosic fibres (Rayon tire yarn, Tencel, Viscose, Carbacell) and thermoplastic commodity polymers, such as polypropylene (PP), polyethylene (PE), high impact polystyrene (HIPS), poly(lactic acid) (PLA), and a thermoplastic elastomer (TPE) as the matrix polymer. For compounding, a specially adapted double pultrusion technique has been employed which provides composites with homogeneously distributed fibres. Extensive investigations were performed with Rayon reinforced PP in view of applications in the automotive industry. The Rayon-PP composite is characterized by high strength and an excellent impact behaviour as compared with glass fibre reinforced PP, thus permitting applications in the field of engineering thermoplastics such as polycarbonate/acrylonitrile butadiene styrene blends (PC/ABS). With the PP based composites the influence of material parameters (e.g. fibre type and load, coupling agent) were studied and it has been demonstrated how to tailor the desired composite properties as modulus and heat distortion temperature (HDT) by varying the fibre type or adding inorganic fillers. Man-made cellulose fibers are also suitable for the reinforcement of further thermoplastic commodity polymers with appropriate processing temperatures. In case of PE modulus and strength are tripled compared to the neat resin while Charpy impact strength is increased five-fold. For HIPS mainly strength and stiffness are increased, while for TPE the property profile is changed completely. With Rayon reinforced PLA, a fully biogenic and biodegradable composite with excellent mechanical properties including highly improved impact strength is presented.  相似文献   

12.
Neutron reflectivity data have been obtained using a specially designed cell that allows the investigation of the interfaces between polymers in the melt state. Systems which are semicrystalline at room temperature can be investigated for the first time. Example results from a polystyrene (PS)/ polyethylene (PE) interface (both with and without copolymer) and an isotactic polypropylene (PP)/ high density polyethylene interface are presented.  相似文献   

13.
综述了近年来聚丙烯(PP)基多相体系,如PP/弹性体(橡胶)、PP/聚乙烯(PE)、PP/对苯二甲酸乙二脂(PET)、PP/聚酰胺(PA)等共混体系和PP/CaCO3、PP/滑石粉、PP/蒙脱土(MMT)以及PP与其它无机物的复合体系中聚丙烯β晶的研究进展,阐述了在这些聚丙烯基共混和复合体系中影响聚丙烯β晶生成的因素、聚丙烯β晶的生成机理以及聚丙烯β晶对多相体系结构和性能的影响,并对富含β晶的聚丙烯(PP)基多相体系的研究和应用的发展趋势进行了展望。  相似文献   

14.
The standard methods of measuring the elastic properties of polymer melts are briefly reviewed and a method of measuring another combination of viscoelastic properties, the melt strength, is described. Data are presented on the melt strength of various types of polyethylene resins and on ionomer resins. The effects on various viscoelastic properties of branching or of the addition of fine fibrils of Teflon perfluorocarbon resin are reported.  相似文献   

15.
Polypropylene (PP)/Montmorillonite (MMT) nanoclay based composite was prepared by melt compounding with maleic anhydride grafted polypropylene (MA-g-PP) as a compatibilizer in a twin-screw extruder, and the test specimens were injection molded. Mechanical properties such as tensile modulus, flexural modulus, yield strength and maximum percent strains were measured for pure PP and PP based nanocomposite to establish the effect of clay platelet reinforcement. The fracture properties were measured by using the essential work of fracture (EWF) method. PP/clay nanocomposite shows 25% improvement in specific EWF compared to pure PP. The variation of EWF parameters with loading rate is discussed, whilst the mechanisms of fracture are considered in a subsequent paper.  相似文献   

16.
Hard elastic monofilaments from polypropylene (PP) and its blends with polyethylene (PE) have been studied. Filaments with sharply different degrees of hard elasticity have been obtained by the same melt-spinning process from three types of PP resin with almost the same isotacticity, molecular weight, and melt index and from blends of one of the PP resin with PE or high-molecular weight PP (HMPP). With addition of a small amount of HDPE or HMPP to the parent PP resin, the hard elasticity of the filaments is increased significantly. Filaments with high hard elasticity can be prepared from PP resins of blends which show a relatively slow spherulitic growth rate. It is argued that the increased hard elasticity is due to row lamellae in PP fibers containing more adjacent folded chains and fewer tie molecules between lamellae and chain entanglements in the amorphous phase.  相似文献   

17.
Methyl vinyl silicone rubber(MVQ)/polypropylene(PP) thermoplastic vulcanizate(TPV) combines the good melt processability,recyclability and sealing performance as well as biosafety, stain and fluid resistance, and thus it is especially suitable in bio-safety areas and wearable electronic devices, etc. Nevertheless, the compatibility between MVQ and PP phases is poor. A big challenge on the compatibilization of MVQ/PP blends is that neither MVQ nor PP contains any reactive groups. In this study, a...  相似文献   

18.
利用具有"颗粒反应器技术(RGT)"特征的Ziegler-Natta催化剂进行丙烯多相共聚(丙烯均聚+乙烯/丙烯无规共聚),通过在乙丙共聚阶段引入双烯烃单体1,9-癸二烯,使乙丙共聚物在聚合的同时实现交联,制备了新型抗冲聚丙烯合金.聚合反应结果表明,1,9-癸二烯可参与乙丙共聚,同时对聚合反应速率和共聚物组成影响较小;1,9-癸二烯使乙丙共聚物发生支化/部分交联,合金聚合物的熔体流动速率在引入1,9-癸二烯后显著降低,且凝胶含量随1,9-癸二烯用量的增加而增大.形态研究结果表明,乙丙共聚物的交联显著降低了其在聚丙烯基体中的分散尺度,提高了分散均匀性,分散相粒径随支化/交联程度提高而减小.力学性能测试结果表明,乙丙共聚物的交联使合金聚合物在保持较高韧性的同时显著提升了刚性,有利于实现抗冲聚丙烯合金的刚韧平衡.  相似文献   

19.
聚乳酸(PLA)是目前合成生物可降解高分子材料中应用量最大的品种,可望逐渐部分取代聚烯烃而更广泛应用于各个领域。但PLA树脂结构决定的松弛特性导致其加工过程特殊的黏弹特性,使其熔体强度低、成型工艺特性不稳定并进而导致产品尺寸和性能不稳定。此外,PLA极低的结晶速率,使其在挤出和注射成型等较高冷却速率的实际加工条件下呈无定型态,进一步影响了其加工和使用性能。这些问题已成为PLA更大规模商品化应用的瓶颈。本文从通过调控PLA熔体加工过程的黏弹特性而提高其可加工性出发,综述近年来本课题组在PLA成型加工过程中熔体粘弹特性和结晶行为(结晶速率和结晶结构)调控方面的研究进展。  相似文献   

20.
研究了多官能团辅助单体偏苯三酸三丙烯酯(TATM)对马来酸酐接枝聚丙烯的熔体流动速率(MFR)和流变行为的影响.当以不含抗氧剂的聚丙烯粉料为原料时,TATM的加入对稳定接枝产物MFR的效果并不理想.但将聚丙烯粉料添加抗氧剂并造粒后,TATM的加入则可有效稳定体系的MFR,各种流变曲线显示出接枝产物的熔体弹性明显提高,说明有枝化或交联结构出现.针对PP粉料和粒料间接枝产物流变行为存在的重大差异,结合熔体自由基接枝反应的机理进行了解释.TATM能够起到稳定MFR的效果是由于其提高了接枝物的熔体弹性,从而抵消了聚丙烯熔体接枝反应中所不可避免的β断链所造成的剪切黏度下降.聚丙烯粉料和粒料中抗氧剂的差异对聚丙烯的加工降解有严重影响,造成了TATM在不同聚丙烯体系中效果的差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号