首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin–papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25–35 kGy. The irradiated chitin–papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin–papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.  相似文献   

2.
Today, the most common methods used for medical device sterilisation are by gaseous ethylene oxide and by electron beam or gamma irradiation. With X-ray sterilisation about to enter the market, its material compatibility needs to be assessed at doses typically encountered during a sterilisation process. This paper reports on a study that compares the effects of exposing different types of plastics that are commonly used in medical devices to 60Co or to 5 MeV X-rays. The dose rate for both irradiation modalities was of the same order of magnitude. Under these conditions, both types of radiation are found to have similar effects on polymer properties.  相似文献   

3.
A study has been made on the compatibility of recycled polyethylene terephthalate (R-PET) and low density polyethylene (LDPE) blend in the presence of ethylene vinyl acetate (EVA) as a compatibilizing agent prepared by extrusion hot stretching process. EVA content in the blend as a compatibilizing agent was an enhancement effect on radiation crosslinking of R-PET/EVA/LDPE blends and the highest radiation crosslinking was obtained when the EVA content was reached at 10 % EVA when irradiated by gamma irradiation. Blends containing different (EVA) ratios were irradiated to different doses of gamma irradiation 25, 50 and 100 kGy. The effect of the compatibilizer and radiation on mechanical, thermal properties of R-PET together with LDPE and morphology has been investigated. It was found that gamma irradiation together with the presence of compatibilizing agent (EVA) has positive effect on the mechanical and thermal properties of R-PET/LDPE blend. The structural properties of R-PET/LDPE modified by gamma irradiation and EVA as compatibilizing agent was examined by SEM. Also, it was found that the optimum concentration of EVA and gamma irradiation dose was found to be 10 % EVA and 100 kGy, respectively.  相似文献   

4.
To apply an irradiation technique to sterilize “Hybrid” biomedical materials including enzymes, we selected papain, a well-characterized plant endopeptidase as a model to examine durability of enzyme activity under the practical irradiation condition in which limited data were available for irradiation inactivation of enzymes. Dry powder and frozen aqueous solution of papain showed significant durability against 60Co-gamma irradiation suggesting that, the commercial irradiation sterilizing method is applicable without modification. Although irradiation of unfrozen aqueous papain solution showed an unusual change of the enzymatic activity with the increasing doses, and was totally inactivated at 15 kGy, we managed to keep the residual activity more than 50% of initial activity after 30-kGy irradiation, taking such optimum conditions as increasing enzyme concentration from 10 to 100 mg/ml and purging with N2 gas to suppress the formation of free radicals.  相似文献   

5.
In this study, radiation stability of poly(bisphenol-a-epichlorohydrin) (PBEH) was studied via gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h, in order to understand the possible use of PBEH in radioactive waste management as a solidifying agent. The total dose of irradiation was up to 2150 kGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with the change of dose rate and total dose of irradiation. Tensile strength at yield was increased first then decreased when irradiated, while toughness decreased. The half value dose (HVD) of elongation was found as 29 kGy at dose rate of 1540 Gy/h. The non-irradiated PBEH was transparent, and the color changed to yellow with irradiation. Mechanical tests showed that PBEH has high radiation stability although there were some structural changes. It was seen that PBEH is a candidate polymer to be used in the immobilization of radioactive waste regarding radiation stability.  相似文献   

6.
The paper presents an innovative approach towards development of real time dosimetry using a chemical dosimeter for measurement of absorbed radiation dose in the range between 1 and 400 Gy. Saturated chloroform solution in water, a well known chemical dosimeter, is used to demonstrate the concept of online measurement of radiation dose. The measurement approach involves online monitoring of increase in conductivity of saturated chloroform solution due to progressive build up of traces of highly conducting HCl during exposure to gamma irradiation. A high performance pulsating sensor-based conductivity monitoring instrument has been used to monitor such real time change in conductivity of solution. A relation between conductivity shift and radiation dose has been established using radiochemical yield value (G value) of HCl. The G value of HCl in saturated chloroform dosimeter has been determined using laboratory developed pulsating sensor-based devices. In this connection dose rate of Co-60 gamma chamber was determined using Fricke dosimeter following a simple potentiometric measurement approach developed in-house besides conventional spectrophotometry. Results obtained from both measurement approaches agreed well. Complete instrumentation package has also been developed to measure real time radiation dose. The proposed real time radiation dosimeter is successfully tested in several measurement campaigns in order to assure its performance prior to its deployment in field.  相似文献   

7.
Samples of a new, naphthenic based electrical-grade insulating mineral oil (type AV-58), were irradiated with -rays from a60Co source. Doses of up to 640 kGy were used in order to investigate the chemical effects promoted by -rays in the oils. After irradiation the samples were fractionated by preparative liquid chromatography into eight compound classes, which were then analyzed by high resolution gas chromatography. By comparing the profile of each class with the equivalent fractions of the same oil without irradiation, it could be concluded that no appreciable changes were found within the dose range investigated. This result indicates that -ray irradiation of contaminants, such as PCB's, in these oils could be conducted without matrix interference.  相似文献   

8.
Poly(carbonate urethane) (PCU), is a valuable commercial engineering polymer. In order to understand the possible use of PCU in radioactive waste management as a solidifying agent or as a disposal container, radiation stability of the PCU is studied by Co-60 gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h. The total dose of irradiation was up to 6.24 MGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with rate and total dose of irradiation. Ultimate tensile strength and toughness first increased and then decreased with the irradiation dose. Half value dose (HVD) for elongation was 4010 kGy and for tensile strength 6010 kGy at the dose rate of 1540 Gy/h. The non-irradiated PCU transparent color changed to yellow and then brown with increased irradiation dose. The FTIR spectral analysis showed a random scission of polymer with irradiation. From the experimental observation, it was shown that PCU can be used for embedding radioactive waste for about 300 years.  相似文献   

9.
Source load planning is an important part of optimising the performance of cobalt-60 gamma irradiation plants. The best results are achieved using a complex algorithm to accurately model the radiation profile of the source. In this way operational plant performance may be predicted as a function of changes in activity distribution within the source rack. This paper describes an approach to the prediction of plant performance that is numerically simpler than attempting to calculate actual doses from first principles. It shows how validation dosimetry results can be used to validate the software-predicted dose distribution and details how this enables the load plan to be tailored to meet the specific objectives of the plant operator. Improvements in product throughput and reduced maximum to minimum dose ratios are typical.  相似文献   

10.
The objective of the work is to synthesize pectin-N, N-Dimethylacrylamide (DMAA) hydrogel by gamma radiation without using any initiators and cross-linking agents. Effect of radiation doses on gel fraction and equilibrium swelling as a function of pH were studied, and 5 kGy radiation dose was found to be the optimum dose for hydrogel synthesis. The grafting /crosslinking was investigated by Fourier transform infrared spectroscopy. Thermal properties and surface morphology were studied by differential scanning calorimetry and scanning electron microscopy. To study the drug release kinetics, 5-fluorouracil was loaded into the hydrogel and in vitro release was carried out in simulated gastric and intestinal fluid. The release profile of drug showed that more than 90% of the loaded drugs were released after 4 hours at both gastric fluid and intestinal fluid pH. Drug release data was fitted into zero order, Higuchi and Korsmeyer-Peppas kinetic models. Higuchi model was found to be the best fitted and release exponent ‘n’ value of Korsmeyer-Peppas model indicated the non-Fickian transport.  相似文献   

11.
The application of gamma irradiation for pretreatment of lignocellulosic materials for their hydrolysis and to increase their digestibility for rumen animal have been reported in the literature. Gamma irradiation of corn stover in combination with sodium hydroxide for bioconversion of polysaccharide into protein by Pleurotus spp has also been reported.

In this study experiments were designed to find out whether gamma radiation could serve both as a decontaminating agent as well as hydrolytic agent of sawdust for the bioconversion of four varieties of Pleurotus spp.

Preliminary results indicate that a dose of 20kGy of gamma irradiation increase the yield of Pleurotus eous var ET-8 whilst decreasing the yield of other varieties.  相似文献   


12.
Dilute aqueous solution of cresol red has been evaluated spectrophotometrically as possible gamma rays dosimeter. A 0.10 mM solution of cresol red was irradiated by gamma rays using a cobalt-60 radiation source. The absorbance spectra of the unirradiated and irradiated solutions were recorded using double beam scanning spectrophotometer. The absorbance of the solution before and after irradiation was measured at 434 nm (λmax) as well as at other wavelengths (415, 448 and 470 nm). Various parameters, such as Absorbance (A), ΔA, %A, -log A and log Ao/Ai were plotted against radiation dose, in order to check the response of cresol red solution and its possible use as chemical dosimeter. The response plots of A, ΔA, and %A versus absorbed dose showed that the solution can be used as a radiation dosimeter in a dose range up to 0.82 kGy. Using response plots of -log A and log Ao/Ai, the useful dose range can be extended up to 1.65 kGy; which are useful dose ranges for food irradiation applications. Stability studies of cresol red solution at different light and temperature conditions for pre- and post-irradiated storage of the dosimetric solutions suggested that aqueous solution of cresol red is highly stable in dark, under fluorescence light and at room temperature up to 150 days  相似文献   

13.
Whole plant of Fagonia arabica with 3 different particle sizes (30, 50 and 70 mesh) were exposed to gamma radiation doses of 1–10 kGy from a Cobalt 60 source. A series of tests was performed in order to check the feasibility of irradiation processing of the plant. The applied radiation doses did not affect (P<0.05) pH and antimicrobial activities of the plant. The total weight of the dry extracts in methanol as well as water was found increased with irradiation. The irradiated samples showed significant increase in phenolic content and free radical scavenging activity using DPPH. Shortly after irradiation (on the day of radiation treatment) high amounts of free radicals were detected in the irradiated plant samples and the chemiluminescence measurements were generally found to be dose dependent. Maximum luminescence intensity was observed in case of samples with mesh size of 30 for all the radiation doses applied. After a period of one month the chemiluminescence signals of the irradiated samples approximated those of the controls. The study suggests that gamma irradiation treatment is effective for quality improvement and enhances certain beneficial biological properties of the treated materials.  相似文献   

14.
Chitosan was used as a sealant of knitted polyester vascular grafts. Three sterilization methods for chitosan-coated prostheses were tested: sterilization with ethylene oxide, formaldehyde and irradiation with gamma rays. Radiation sterilization was found to be the most promising of tested methods. The radiation-induced changes in chitosan irradiated in solid state were investigated. Main chain scission was found as the predominant effect of irradiation. Changes in IR and UV spectra were analyzed. Existence of some post-effects was detected. It seems that the observed increase in biocompatibility of chitosan surface caused by irradiation with sterilizing dose (25 kGy) is due to some structural factor connected with a decrease in molecular weight.  相似文献   

15.
Two anticancer drugs, cyclophosphamide (CPH) and doxorubicin hydrochloride (DOXO), in powder form were exposed to a range of doses of 60Co gamma and electron beam radiation to study the effects of ionizing radiation. Pharmacopoeia tests, discolouration, degradation products, effect of irradiation temperature and dose rate were investigated. CPH undergoes less than 2% degradation at 30 kGy. Chromatographic studies revealed formation of several trace level degradation products, discolouration and free radicals in the irradiated CPH. N,N-bis (2-chloroethyl) group in the molecule is particularly sensitive to radiation degradation. Irradiation to 5 kGy at low temperature (77 K) did not result in significant changes. DOXO was observed to be quite radiation resistant and did not undergo significant changes in its physico-chemical properties and degradation product profile. It can be radiation sterilized at normal sterilization dose of 25 kGy.  相似文献   

16.
Application of gamma irradiation for inhibition of food allergy   总被引:5,自引:0,他引:5  
This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.  相似文献   

17.
The experiment was conducted to determine the effect of gamma radiation on plant growth and development, flag leaf gas exchange characteristics such as net photosynthetic rate (P N), stomatal conductance (g s), and transpiration rate (E) and activity of key carbon and nitrogen assimilating enzymes like Rubisco, starch synthase (SS) and nitrate reductase (NR) in field grown wheat. Grains of cultivar PBW-343 were exposed to a 60Co (Cobalt-60) gamma source at a dose range from 0 to 500 Gy (Gray). Gas exchange characteristics of flag leaf were measured using Infrared Gas Analyzer (IRGA), while mineral nutrients were analyzed spectrophotometrically. Our results show that an irradiation treatment, in general, caused an improvement in plant growth and yield characteristics such as shoot and root mass, root length and surface area, leaf area and chlorophyll SPAD index, tiller number and grain yield. However, irradiation exceeding 5 Gy reduced the magnitude of radiation advantage for most of the investigated physiological and biochemical traits. No germination was recorded at 500 Gy irradiation dose. A dose-dependant increase in shoot Fe in radiated plants up to 25 Gy reflected its higher plant root to shoot translocation which may yield micronutrient rich grains. At higher dose of 100 Gy, there was a drastic reduction in flag leaf membrane stability index (MSI), photosynthesis, Rubisco, NR, and nutrients like K, P, Mg, Fe, and Zn. Starch synthase enzyme activity was unaffected by gamma irradiation indicating that the negative effect of high dose (100 Gy) on the grain yield were caused by the adverse effect of radiation on the gas exchange attributes particularly photosynthesis, carbon, and nitrogen assimilation efficiency and the plant uptake of mineral nutrients. The study concludes that gamma radiation at a low dose (25 Gy or lower) stimulates, while a high dose (100 Gy and above) inhibits plant growth and development of wheat. The adverse effect at 100 Gy and beyond could be attributed to the poor carbon and nitrogen assimilation efficiency and the plant uptake of mineral nutrients, all of which are the ultimate determinant of plant health.  相似文献   

18.
Immobilization of antibodies and enzyme-labeled antibodies by radiation polymerization at low temperatures was studied. The antibody activity of antibody was not affected by irradiation at an irradiation dose of below 8 MR and low temperatures. Immobilization of peroxidase-labeled anti-rabbit IgG goat IgG, anti-peroxidase, peroxidase, and anti-alpha-fetoprotein was carried out with hydrophilic and hydrophobic monomers. The activity of the immobilized enzyme-labeled antibody membranes varied with the thickness of the membranes and increased with decreasing membrane thickness. The activity of the immobilized antibody particles was varied by particle size. Immobilized anti-alpha-fetoprotein particles and membranes can be used for the assay of alpha-fetoprotein by the antigen-antibody reaction, such as a solid-phase sandwich method with high sensitivity.  相似文献   

19.
Alpha-crystallin possesses a molecular chaperone-like activity that prevents proteins from aggregating; however, the mechanism of this activity is not well known. Here we have taken gamma-irradiated alpha-crystallin and studied the relationship between the decrease in chaperone-like activity and the modifications such as oxidation, isomerization and racemization of amino acids in this molecule. We found that the chaperone-like activity of alpha-crystallin decreased with increasing gamma irradiation. After 4000 Gy gamma irradiation the activity of alpha-crystallin was reduced to 40% of the level of nonirradiated, native alpha-crystallin. The circular dichroism spectrum showed that the secondary structure of the irradiated alpha-crystallin had not changed. However, its tertiary structure appeared to change following more than 1000 Gy irradiation. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis also indicated that cross-linking of alpha-crystallin increased with increasing radiation doses. Irradiated and nonirradiated alpha-crystallin was subjected to trypsin digestion and peptide analysis by reverse-phase high-performance liquid chromatography and mass and sequence analysis. Depending on the radiation dose, Met-1 of alpha A-crystallin was oxidized to methionine sulfoxide. In addition, Asp-151 of alpha A-crystallin was isomerized to the beta-Asp form after irradiation, and racemization of Asp-151 decreased. Thus, the loss of the chaperone-like activity of alpha-crystallin is related to changes in its isomerization, oxidation and racemization.  相似文献   

20.
Gamma-ray irradiation is a very useful tool to improve the physicochemical properties of various biodegradable polymers without the use of a heating and crosslinking agent. The purpose of this study was to investigate the degradation behavior of poly (l-lactide-co-glycolide) (PLGA) depending on the applied gamma-ray irradiation doses. PLGA films prepared through a solvent casting method were irradiated with gamma radiation at various irradiation doses. The irradiation was performed using 60Co gamma-ray doses of 25–500 kGy at a dose rate of 10 kGy/h.The degradation of irradiated films was observed through the main chain scission. Exposure to gamma radiation dropped the average molecular weight (Mn and Mw), and weakened the mechanical strength. Thermograms of irradiated film show various changes of thermal properties in accordance with gamma-ray irradiation doses. Gamma-ray irradiation changes the morphology of the surface, and improves the wettability. In conclusion, gamma-ray irradiation will be a useful tool to control the rate of hydrolytic degradation of these PLGA films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号