首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
Abstract. Four-layer feedforward regular fuzzy neural networks are constructed. Universal ap-proximations to some continuous fuzzy functions defined on (R)“ by the four-layer fuzzyneural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzyvalued functions are empolyed to approximate continuous fuzzy valued functions defined on eachcompact set of R“. Secondly,by introducing cut-preserving fuzzy mapping,the equivalent condi-tions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzyneural networks are shown. Finally a few of sufficient and necessary conditions for characteriz-ing approximation capabilities of regular fuzzy neural networks are obtained. And some concretefuzzy functions demonstrate our conclusions.  相似文献   

2.
近年来,前向神经网络泛逼近的一致性分析一直为众多学者所重视。本文系统分析三层前向网络对于拟差值保序函数族的一致逼近性,其中,转换函数σ是广义Sigmoidal函数。并将此一致性结果用于建立一类新的模糊神经网络(FNN),即折线FNN.研究这类网络对于两个给定的模糊函数的逼近性,相关结论在分析折线FNN的泛逼近性时起关键作用。  相似文献   

3.
前向神经网络的泛逼近性一直是神经网络的研究热点.本文给出了连续模糊函数的定义,依Hausdorff度量,借助模糊值Bernstein多项式关于连续模糊函数的逼近性质,证明了前向网络作为模糊函数泛逼近器的一致逼近性结果,并通过实例给出了逼近性的具体实现过程.  相似文献   

4.
引入了一种新的sigmoidal型神经网络,给出了其对连续函数逼近的点态和整体估计.结果表明这种新的神经网络算子具有多项式逼近所不能达到的很好的逼近速度.为了改进对光滑函数的逼近速度,我们进一步引入了一种新的神经网络的线性组合,并给出了这种组合逼近的点态估计和整体估计.最后给出了一个数值例子.  相似文献   

5.
两类模糊系统作为通用逼近器的充分条件的比较与分析   总被引:2,自引:0,他引:2  
对现有的Mamdani模糊系统和T-S模糊系统作为通用逼近器的充分条件作比较分析,提出了通过三种不同算法获得的单输入单输出Mamdani模糊系统作为通用逼近器的充分条件的保守性比较定理。  相似文献   

6.
为了克服前向神经网络的固有缺陷,提出了基于采样数据建立的含单隐层神经元的模糊前向神经网络.该网络模型利用权值直接确定法得到了最优权值,网络结构可以随采样数据的多少,自主设定隐层神经元,完成了近似插值与精确插值的转换.计算机数值仿真实验表明,模糊前向神经网络具有逼近精度高、网络结构可调和实时性高的优点,并且可以实现预测和去噪.  相似文献   

7.
利用高斯型隶属函数和采样数据得到了三层模糊前向神经网络。该网络模型利用权值直接确定法得到了最优权值,并依据采样数据中的插值样本较好确定了单隐层神经元个数。该网络是近似插值神经网络。仿真实验表明,高斯型模糊前向神经网络具有逼近精度高、网络结构简单、良好的去噪性和实时性高等优点。  相似文献   

8.
神经网络的函数逼近能力分析   总被引:12,自引:0,他引:12  
本文综述了多层前传网络(MLP)及径向基函数网络(RBF)对函数任意精度逼近的能力,比较了两种网络的最佳逼近特性。对激活函数类的扩充作了介绍,并说明有限数值精度对函数逼近能力实现的影响。  相似文献   

9.
三层前向人工神经网络全局最优逼近   总被引:6,自引:0,他引:6  
提出了求解不等式约束非线性优化问题的群体复合形进化算法 ,提出的算法能充分利用目标函数值的信息、优化搜索过程具有较强的方向性和目标性 ,收敛速度较快 ,且是全局优化算法 ;将群体复合形进化算法应用于三层前向人工神经网络逼近 ,提出了三层前向人工神经网络全局最优逼近算法 ;将三层前向人工神经网络全局最优逼近算法应用于实例 ,表明了提出的全局最优逼近算法的有效性 .  相似文献   

10.
葛彩霞 《应用数学》1999,12(1):47-49
本文研究三层前馈型神经网络的最佳逼近能力,我们证明以多项式函数为隐层神经元作用函数的三层前馈型神经网络,当隐层神经元的个数超过某个给定的界限时,网络的输入输出函数张成一有限维线性空间,从而它可以实现对C(K)的最佳逼近.并且猜测,对非多项式函数的作用函数,若神经元个数有限,则它不具有最佳逼近性质.  相似文献   

11.
为解决T akag i-Sugeno型模糊神经网络在控制多变量系统时的规则组合爆炸问题,提出一种误差前馈补偿的模糊神经网络控制方案,有效实现了三级倒立摆的稳定控制。该控制方案适用对状态变量可按性质和重要程度划分的多变量系统的控制,大大减少了模糊神经网络控制器的规则数,有利于利用专家的控制经验,具有良好的鲁棒性和非线性适应能力。  相似文献   

12.
An application in cultural heritage is introduced. Wavelet decomposition and Neural Networks like virtual sensors are jointly used to simulate physical and chemical measurements in specific locations of a monument. Virtual sensors, suitably trained and tested, can substitute real sensors in monitoring the monument surface quality, while the real ones should be installed for a long time and at high costs. The application of the wavelet decomposition to the environmental data series allows getting the treatment of underlying temporal structure at low frequencies. Consequently a separate training of suitable Elman Neural Networks for high/low components can be performed, thus improving the networks convergence in learning time and measurement accuracy in working time.  相似文献   

13.
双阈值二元神经网络模型解的收敛性   总被引:7,自引:0,他引:7  
研究具负反馈的双阈值二元神经网络模型{x=-μx f(y(t-τ1)) y=-μy-g(x(t-τ2))在一定的初始函数空间内对阀值的一些不同取值范围,证明其解的收敛性,且明确给出各平衡点的收敛域。  相似文献   

14.
本文给出了一般情况下二层前传神经网络中的在线梯度法的收敛性定理,并将其应用于一些常用的活化函数和能量函数。  相似文献   

15.
距离空间中插值神经网络的误差估计   总被引:2,自引:0,他引:2  
研究距离空间中的神经网络插值与逼近问题.首先引进一类广义的激活函数,用比较简洁的方法讨论距离空间中插值神经网络的存在性,然后给出插值神经网络逼近连续函数的误差估计.  相似文献   

16.
研究了应用人工神经网络对工程建设安全事故控制效果进行评价的方法,给出了具体的评价理论.同时,通过一个实例进行了验证.  相似文献   

17.
时延细胞神经网络的概周期解的存在性和指数稳定性   总被引:1,自引:0,他引:1  
谢惠琴  王全义 《数学研究》2004,37(3):272-278
研究时延细胞神经网络的概周期解存在性和全局指数稳定性问题 ,巧妙地引入可调实参数di>0 (i =1,2 ,… ,n) ,获得了该神经网络存在唯一的概周期解的充分条件和所有其它解均指数地收敛于此概周期解的充分条件 .  相似文献   

18.
将模糊理论和神经网络相结合, 建立基于模糊神经系统的自然坡失稳预测模型--模糊神经网络(FANN)方法, 并针对我国湖北宜昌鄂西磷矿开采引起上部自然坡失稳的可能性进行了具体计算分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号