首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermochemical properties of some small clusters such as the (H2O)2*+ dimer have already been investigated by both experimental and theoretical methods. The recent method to selectively prepare the ammonia-water ionized dimer [NH3, H2O]*+ (and not its proton transfer isomer [NH4+, OH*]) allowed us to study its chemical reactivity. This study focuses on the charge and proton transfer pathways: Ion-molecule reactions in the cell of an FT-ICR mass spectrometer were carried out with a range of organic compounds. Examination of the reactivity of the [NH3, H2O]*+ ionized dimer versus ionization energy and proton affinity of the neutral reagents shows a threshold in the reactivity in both instances. This leads to a bracketing of thermochemical properties related to the dimer. From these experiments and in agreement with ab initio calculations, the adiabatic recombination energy of the [NH3, H2O]*+ dimer was evaluated at -9.38 +/- 0.04 eV. The proton affinity bracketing required the reevaluation of two reference gas-phase basicity values. The results, in good agreement with the calculation, lead to an evaluation of the proton affinity of the [NH2*, H2O] dimer at 204.4 +/- 0.9 kcal mol(-1). These two experimental values are respectively related to the ionization energy of NH3*+ and to the proton affinity of NH2* by the difference in single water molecule solvation energies of ionized ammonia, of neutral ammonia, and of the NH2* radical.  相似文献   

2.
Ab initio and density functional methods have been used to examine the structures and energetics of the hydrated clusters of methane sulfonic acid (MSA), CH3SO3H.(H2O)n (n = 1-5). For small clusters with one or two water molecules, the most stable clusters have strong cyclic hydrogen bonds between the proton of OH group in MSA and the water molecules. With three or more water molecules, the proton transfer from MSA to water becomes possible, forming ion-pair structures between CH3SO3- and H3O+ moieties. For MSA.(H2O)3, the energy difference between the most stable ion pair and neutral structures are less than 1 kJ/mol, thus coexistence of neutral and ion-pair isomers are expected. For larger clusters with four and five water molecules, the ion-pair isomers are more stable (>10 kJ/mol) than the neutral ones; thus, proton transfer takes place. The ion-pair clusters can have direct hydrogen bond between CH3SO3- and H3O+ or indirect one through water molecule. For MSA.(H2O)5, the energy difference between ion pairs with direct and indirect hydrogen bonds are less than 1 kJ/mol; namely, the charge separation and acid ionization is energetically possible. The calculated IR spectra of stable isomers of MSA.(H2O)n clusters clearly demonstrate the significant red shift of OH stretching of MSA and hydrogen-bonded OH stretching of water molecules as the size of cluster increases.  相似文献   

3.
We report diffusion quantum Monte Carlo (DMC) calculations of the equilibrium dissociation energy D(e) of the water dimer. The dissociation energy measured experimentally, D(0), can be estimated from D(e) by adding a correction for vibrational effects. Using the measured dissociation energy and the modern value of the vibrational energy Mas et al., [J. Chem. Phys. 113, 6687 (2000)] leads to D(e)=5.00+/-0.7 kcal mol(-1), although the result Curtiss et al., [J. Chem. Phys. 71, 2703 (1979)] D(e)=5.44+/-0.7 kcal mol(-1), which uses an earlier estimate of the vibrational energy, has been widely quoted. High-level coupled cluster calculations Klopper et al., [Phys. Chem. Chem. Phys. 2, 2227 (2000)] have yielded D(e)=5.02+/-0.05 kcal mol(-1). In an attempt to shed new light on this old problem, we have performed all-electron DMC calculations on the water monomer and dimer using Slater-Jastrow wave functions with both Hartree-Fock approximation (HF) and B3LYP density functional theory single-particle orbitals. We obtain equilibrium dissociation energies for the dimer of 5.02+/-0.18 kcal mol(-1) (HF orbitals) and 5.21+/-0.18 kcal mol(-1) (B3LYP orbitals), in good agreement with the coupled cluster results.  相似文献   

4.
The thermochemical properties of benzoylnitrene radical anion, C6H5CON-, were determined by using a combination of energy-resolved collision-induced dissociation (CID) and proton affinity bracketing. Benzoylnitrene radical anion dissociates upon CID to give NCO- and phenyl radical with a dissociation enthalpy of 0.85 +/- 0.09 eV, which is used to derive an enthalpy of formation of 33 +/- 9 kJ/mol for the nitrene radical anion. Bracketing studies with the anion indicate a proton affinity of 1453 +/- 10 kJ/mol, indicating that the acidity of benzamidyl radical, C6H5CONH, is between those of benzamide and benzoic acid. Combining the measurements gives an enthalpy of formation for benzamidyl radical of 110 +/- 14 kJ/mol and a homolytic N-H bond dissociation energy in benzamide of 429 +/- 14 kJ/mol. Additional thermochemical properties obtained include the electron affinity of benzamidyl radical, the hydrogen atom affinity of benzoylnitrene radical anion, and the oxygen anion affinity of benzonitrile.  相似文献   

5.
Thermochemical cycles that involve pKa, gas-phase acidities, aqueous solvation free energies of neutral species, and gas-phase clustering free energies have been used with the cluster pair approximation to determine the absolute aqueous solvation free energy of the proton. The best value obtained in this work is in good agreement with the value reported by Tissandier et al. (Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. J.; Earhart, A. D.; Coe, J. V. J. Phys. Chem. A 1998, 102, 7787), who applied the cluster pair approximation to a less diverse and smaller data set of ions. We agree with previous workers who advocated the value of -265.9 kcal/mol for the absolute aqueous solvation free energy of the proton. Considering the uncertainties associated with the experimental gas-phase free energies of ions that are required to use the cluster pair approximation as well as analyses of various subsets of data, we estimate an uncertainty for the absolute aqueous solvation free energy of the proton of no less than 2 kcal/mol. Using a value of -265.9 kcal/mol for the absolute aqueous solvation free energy of the proton, we expand and update our previous compilation of absolute aqueous solvation free energies; this new data set contains conventional and absolute aqueous solvation free energies for 121 unclustered ions (not including the proton) and 147 conventional and absolute aqueous solvation free energies for 51 clustered ions containing from 1 to 6 water molecules. When tested against the same set of ions that was recently used to develop the SM6 continuum solvation model, SM6 retains its previously determined high accuracy; indeed, in most cases the mean unsigned error improves when it is tested against the more accurate reference data.  相似文献   

6.
The goal of this work was to obtain a detailed insight on the gas-phase protonation energetic of adenosine using both mass spectrometric experiments and quantum chemical calculations. The experimental approach used the extended kinetic method with nanoelectrospray ionization and collision-induced dissociation tandem mass spectrometry. This method provides experimental values for proton affinity, PA(adenosine) = 979 +/- 1 kJ.mol (-1), and for the "protonation entropy", Delta p S degrees (adenosine) = S degrees (adenosineH (+)) - S degrees (adenosine) = -5 +/- 5 J.mol (-1).K (-1). The corresponding gas-phase basicity is consequently equal to: GB(adenosine) = 945 +/- 2 kJ.mol (-1) at 298K. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of 974 kJ.mol (-1) after consideration of isodesmic proton transfer reactions with pyridine as the reference base. Moreover, computations clearly showed that N3 is the most favorable protonation site for adenosine, due to a strong internal hydrogen bond involving the hydroxyl group at the 2' position of the ribose sugar moiety, unlike observations for adenine and 2'-deoxyadenosine, where protonation occurs on N1. The existence of negligible protonation entropy is confirmed by calculations (theoretical Delta p S degrees (adenosine) approximately -2/-3 J.mol (-1).K (-1)) including conformational analysis and entropy of hindered rotations. Thus, the calculated protonation thermochemical properties are in good agreement with our experimental measurements. It may be noted that the new PA value is approximately 10 kJ.mol (-1) lower than the one reported in the National Institute of Standards and Technology (NIST) database, thus pointing to a correction of the tabulated protonation thermochemistry of adenosine.  相似文献   

7.
8.
Recently we carried out ab initio molecular orbital calculations of the hydrogen bond energies in the dimers and trimers of N-methylacetamide (NMA), and found the existence of a cooperative effect in the hydrogen bonding, by which formation of one hydrogen bond in a hydrogen-bonded chain enhances the strength of another hydrogen bond. In order to confirm the existence of such a cooperative effect, we have determined experimentally the enthalpy changes occurring upon hydrogen bonding of NMA in CCl4 solution. First, following the method proposed by us, the population fractions of free (non-bonded) NH protons are obtained from the observed amide proton NMR chemical shifts and the IR intensities of the free NH stretching bands. Next, the enthalpy changes are evaluated by analyzing the equilibrium between the free and bonded states of an NH proton. In this analysis, the existence of the CCl4 solvent is taken into account. The stabilization energy of hydrogen bonds in a trimer, as compared with twice the hydrogen bond energy in a dimer, is 5.4 kJ mol(-1), in good agreement with the calculated value (5.9 kJ mol(-1)). This result provides experimental confirmation of the existence of a cooperative effect in hydrogen bonding.  相似文献   

9.
Theoretical study of the alpha-cyclodextrin dimer   总被引:1,自引:0,他引:1  
The molecular structure, stabilization energy, and thermodynamic properties of the plausible modes of the interaction for the three possible alpha-cyclodextrin (alpha-CD) dimers (head-to-head, tail-to-tail, and head-to-tail) with a water cluster were obtained using quantum chemical methods for the first time. Nine distinct spatial arrangements were investigated. The head-to-head mode of interaction with water is preferred by more than 10 kcal.mol(-1) (BLYP/6-31G(d,p)//PM3 Gibbs free energy difference value at room temperature) in relation to the next stable structure, with a water dimer structure placed inside each cavity and cyclic water tetramers surrounding each tail end. The inter alpha-CD hydrogen bonds play a major role to stabilize the dimeric structures, with no water tetramer being found between the two alpha-CD subunits for the preferred global minimum structure. Therefore, a theoretical model aimed to describe the behavior of alpha-CD dimer, or their inclusion complexes, in the aqueous media should take into account this preference for binding of the water molecules.  相似文献   

10.
Dissociative photoionization mass spectrometry has been used to measure appearance energies for the 1-hydroxyethyl cation (CH(3)CH=OH(+)) formed from ethanol and 2-propanol. Molecular orbital calculations for these two unimolecular fragmentation reactions suggest that only methyl loss from ionized 2-propanol does not involve excess energy at the threshold. The experimental appearance energy of 10.31 +/- 0.01 eV for this latter process results in a 298 K heat of formation of 593.1 +/- 1.2 kJ mol(-1) for CH(3)CH=OH(+) and a corresponding absolute proton affinity for acetaldehyde of 770.9 +/- 1.3 kJ mol(-1). This value is supported by both high-level ab initio calculations and a proposed upward revision of the absolute isobutene proton affinity to 803.3 +/- 0.9 kJ mol(-1). A 298 K heat of formation of 52.2 +/- 1.9 kJ mol(-1) is derived for the tert-butyl radical.  相似文献   

11.
A new version of the single-reference-extended kinetic method is presented in which direct entropy correction is incorporated. Results of calibration experiments with the monodentate base pyridine and the bidentate base ethylenediamine are presented for which the method provides proton affinities in excellent agreement with published values and reasonable predictions for the protonation entropies. The method is then used to determine the proton affinity and protonation entropy of the non-protein amino acid beta-oxalylaminoalanine (BOAA). The PA of BOAA is found to be 933.1 +/- 7.8 kJ/mol and a prediction for the protonation entropy of -39 J mol(-1) K(-1) is also obtained, indicating a significant degree of intramolecular hydrogen bonding in the protonated form. These results are supported by hybrid density functional theory calculations at the B3LYP/6-311++G**//B3LYP/6-31+G* level. They indicate that the preferred site of protonation is the alpha-nitrogen atom (PA = 935.0 kJ/mol) and that protonated BOAA has a strong hydrogen bond between the hydrogen on the alpha-amino group and one of the carbonyl oxygen atoms on the side chain.  相似文献   

12.
The conversion between anamorphoses of the dihydrated glycine complex was studied by means of B3LYP/6-31++G**. It was found that proton transfer was accompanied by hydrogen bond transfer in the process of conversion between different kinds of anamorphoses. With proton transfer, the electrostatic action was notably increased and the hydrogen-bonding action was evidently strengthened when the dihydrated neutral glycine complex converts into dihydrated zwitterionic glycine complex. The activation energy required for hydrogen bond transfer between dihydrated neutral glycine complexes is very low (6.32 kJ·mol-1); however, the hydrogen bond transfer between dihydrated zwitterionic glycine complexes is rather difficult with the required activation energy of 13.52 kJ·mol-1 due to the relatively strong electrostatic action. The activation energy required by proton transfer is at least 27.33 kJ·mol-1, higher than that needed for hydrogen bond transfer. The activation energy for either hydrogen bond transfer or proton transfer is in the bond-energy scope of medium-strong hydrogen bond, so the four kinds of anamorphoses of the dihydrated glycine complex could convert mutually.  相似文献   

13.
The photolysis reaction of di-tert-butylperoxide was studied in various solvents by photoacoustic calorimetry (PAC). This technique allows the determination of the enthalpy of this homolysis reaction, which by definition corresponds to the O-O bond dissociation enthalpy of the peroxide in solution, DHsin(degrees)(O-O). The derived value from these experiments in benzene, 156.7 +/- 9.9 kJ mol(-1), is very similar to a widely accepted value for the gas-phase bond dissociation enthalpy, DH(degrees)(O-O) = 159.0 +/- 2.1 kJ mol(-1). However, when the PAC-based value is used together with auxiliary experimental data and Drago's ECW model to estimate the required solvation terms, it leads to 172.3 +/- 10.2 kJ mol(-1) for the gas-phase bond dissociation enthalpy. This result, significantly higher than the early literature value, is however in excellent agreement with a recent gas-phase determination of 172.5 +/- 6.6 kJ mol(-1). The procedure to derive the gas-phase DH(degrees)(O-O) was tested by repeating the PAC experiments in carbon tetrachloride and acetonitrile. The average of the values thus obtained was DH(degrees)(O-O) = 179.6 +/- 4.5 kJ mol(-1), confirming that the early gas-phase result is a lower limit. More importantly, the present study questions the usual assumption that the solvation terms of homolysis reactions producing free radicals in solution should cancel, and suggests a methodology to estimate solvation enthalpies of free radicals.  相似文献   

14.
Tetrafluorobenzyne thermochemistry: experiment and theory   总被引:1,自引:0,他引:1  
Gas-phase thermodynamic properties of 1,2,3,4-tetrafluorobenzyne (1 H-(2)) were determined by Fourier transform mass spectrometry and ab initio and density functional theory methods. 1,2,3,4-Tetrafluorobenzyne radical anion was generated by abstraction of a proton and a hydrogen atom upon reaction of 1,2,3,4-tetrafluorobenzene (1) with O(-.). The resulting structure was confirmed by converting it to a species which could be independently prepared. Bracketing results provided the proton affinity of 1,2,3,4-tetrafluorobenzyne radical anion and the electron affinities of 1,2,3,4-tetrafluorobenzyne and 1,2,3,4-tetrafluorophenyl radical. These measured values were combined in a thermodynamic cycle to provide the heat of hydrogenation of 1 H(2) (DeltaH degree (hyd) = 367 +/- 18 kJ mol(-1)) and the first and second CH bond dissociation energies of 1 (481 +/- 11 and 321 +/- 13 kJ mol(-1)). The same approach failed for the meta and para isomers, but their energetics were examined using B3LYP and CCSD(T) computations.  相似文献   

15.
The proton affinity and gas-phase basicity of proline were evaluated by using density functional theory coupling the B3-LYP hybrid functional with the extended 6--311++G** basis set. Cis and trans conformations of the carboxyl moiety for both exo and endo ring structures were considered for the neutral proline. The results show that the most stable structure of proline has the endo ring conformation with the carboxyl group in the cis position. The structure at the global minimum is stabilized by an intramolecular hydrogen bond. The nitrogen of the ring in the exo form is the preferred protonation site. The calculated proton affinity (924.3 kJ mol(-1)) and gas-phase basicity (894.4 kJ mol(-1)) are in very good agreement with the experimental counterparts.  相似文献   

16.
Gas-phase protonation thermochemistry of arginine   总被引:1,自引:0,他引:1  
The gas-phase basicity (GB), proton affinity (PA), and protonation entropy (DeltapS degrees (M)=S degrees (MH+)-S degrees (M)) of arginine (Arg) have been experimentally determined by the extended kinetic method using an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer. This method provides GB(Arg)=1004.3+/-2.2 (4.9) kJ.mol(-1) (indicated errors are standard deviations, and in parentheses, 95% confidence limits are given). Consideration of previous experimental data using a fast atom bombardment ionization tandem sector mass spectrometer slightly modifies these estimates since GB(Arg)=1005.9+/-3.1 (6.6) kJ.mol(-1). Lower limits of the proton affinity, PA(Arg)=1046+/-4 (7) kJ.mol(-1), and of the "protonation entropy", DeltapS degrees (Arg)=S degrees (ArgH+)-S degrees (Arg)=-27+/-7 (15) J.mol(-1).K(-1), are also provided by the experiments. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of ca. 1053 kJ.mol-1 after consideration of isodesmic proton-transfer reactions with guanidine as the reference base. Computations including explicit treatment of hindered rotations and mixing of conformers confirm that a noticeable entropy loss does occur upon protonation, which leads to a theoretical DeltapS degrees (Arg) term of ca. -45 J.mol(-1).K(-1). The following evaluated thermochemical parameter values are proposed: GB(Arg)=1005+/-3 kJ.mol(-1); PA(Arg)=1051+/-5 kJ.mol(-1), and DeltapS degrees (Arg)=-45+/-12 J.mol(-1).K(-1).  相似文献   

17.
The hitherto unknown gas-phase basicity and proton affinity of 1,3,5-cycloheptatriene (CHT) have been determined by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Several independent techniques were used in order to exclude ambiguities due to proton-induced isomerisation of the conjugate cyclic C(7)H(9)(+) ions, [CHT + H](+). The gas-phase basicity obtained by the thermokinetic method, GB(CHT) = 799 +/- 4 kJ mol(-1), was found to be identical, within the limits of experimental error, with the values measured by the equilibrium method starting with protonated reference bases, and with the values resulting from the measurements of the individual forward and reverse rate constants, when corrections were made for the isomerised fraction of the C(7)H(9)(+) population. The experimentally determined gas-phase basicity leads to the proton affinity of cycloheptatriene, PA(CHT) = 833 +/- 4 kJ mol(-1), and the heat of formation of the cyclo-C(7)H(9)(+) ion, deltaH(f)(0)([CHT + H](+)) = 884 +/- 4 kJ mol(-1). Ab initio calculations are in agreement with these experimental values if the 1,2-dihydrotropylium tautomer, [CHT + H((1))](+), generated by protonation of CHT at C-1, is assumed to be the conjugate acid, resulting in PA(CHT) = 825 +/- 2 kJ mol(-1) and deltaH(f)(0)(300)([CHT + H((1))](+)) = 892 +/- 2 kJ mol(-1). However, the calculations indicate that protonation of cycloheptatriene at C-2 gives rise to transannular C-C bond formation, generating protonated norcaradiene [NCD + H](+), a valence tautomer being 19 kJ mol(-1) more stable than [CHT + H((1))](+). The 1,4-dihydrotropylium ion, [CHT + H((3))](+), generated by protonation of CHT at C-3, is 17 kJ mol(-1) less stable than [CHT + H((1))](+). The bicyclic isomer [NCD + H](+) is separated by relatively high barriers, 70 and 66 kJ mol(-1) from the monocyclic isomers, [CHT + H((1))](+) and [CHT + H((3))](+), respectively. Therefore, the initially formed 1,2-dihydrotropylium ion [CHT + H((1))](+) does not rearrange to the bicyclic isomer [NCD + H](+) under mild protonation conditions.  相似文献   

18.
The structures of lithiated and sodiated alpha-methyl-proline (alpha-Me-Pro) and structural isomers, both with and without a water molecule, are investigated using blackbody infrared radiative dissociation (BIRD) and density functional theory. From the BIRD kinetic data measured as a function of temperature, combined with master equation modeling of these data, threshold dissociation energies for the loss of a water molecule from these clusters are obtained. These energies are 77.5 +/- 0.5 and 53 +/- 1 kJ/mol for lithiated and sodiated alpha-Me-Pro, respectively. For the nonzwitterionic isomer, proline methyl ester, these values are 3.0-4.5 kJ/mol higher. These results provide compelling experimental evidence that alpha-Me-Pro is zwitterionic in these clusters. Theory at the temperature corrected B3LYP/6-311++G**//B3LYP/6-31++G** level indicates that the salt-bridge or zwitterionic forms of lithiated and sodiated alpha-Me-Pro are between 17 and 23 kJ/mol lower in energy than the nonzwitterionic or charge-solvated forms and that attachment of a single water molecule does not significantly change the structure or the relative energies of these clusters. The proton affinity of proline is 8 kJ/mol higher than that of alpha-Me-Pro, indicating that lithiated and sodiated singly hydrated proline should also be zwitterionic.  相似文献   

19.
Vanadyl bond dissociation energies are calculated by density functional theory (DFT). While the hybrid (B3LYP) functional results are close to the available reference data, gradient corrected functionals (BP86, PBE) yield large errors (about 50 to 100 kJ mol(-1)), but reproduce trends correctly. PBE calculations on a V(20)O(62)H(24) cluster model for the (001) surface of V(2)O(5) crystals virtually reproduce periodic slab calculations. The low bond dissociation energy (formation of oxygen surface defect) of 113 kJ mol(-1)(B3LYP) is due to substantial structure relaxations leading to formation of V-O-V bonds between the V(2)O(5) layers of the crystal. This relaxation cannot occur in polyhedral (V(2)O(5))(n) clusters and also not for V(2)O(5) species supported on silica or alumina (represented by cage-type models) for which bond dissociation energies of 250-300 kJ mol(-1) are calculated. The OV(OCH(3))(3) molecule and its dimer are also considered. Radical cations V(2)O(5)(+) and V(4)O(10)(+) have very low bond dissociation energies (22 and 14 kJ mol(-1), respectively), while the corresponding radical anions have higher dissociation energies (about 330 kJ mol(-1)) than the neutral clusters. The bond dissociation energies of the closed shell V(3)O(7)(+) cation (165 kJ mol(-1)) and the closed shell V(3)O(8)(-) anion (283 kJ mol(-1)) are closest to the values of the neutral clusters. This makes them suitable for gas phase studies which aim at comparisons with V(2)O(5) species on supporting oxides.  相似文献   

20.
利用量子化学方法研究了气相和水溶液下,氨基酸侧链与鸟嘌呤和胞嘧啶间的氢键作用.应用B3LYP/6-31+G(d,p)方法优化复合物几何结构,使用MP2/aug-cc-p VDZ方法进行复合物能量、自然键轨道(NBO)电荷和二阶稳定化能的计算.结果表明,水溶液可使氨基酸侧链与碱基或碱基对之间氢键键能显著减小;带电复合物气相和水溶液氢键键能之差范围为50.63~146.48 k J/mol,中性为0.17~24.94 k J/mol;电荷的转移量与氢键键能成正比,电荷转移量越多,复合物越稳定;二阶稳定化能与氢键键长成反比,与电荷转移量成正比,且气相与水溶液氢键二阶稳定化能之比约为两相的电荷转移量之比.水溶液对该类体系中氢键作用具有明显影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号