首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic dilution method was employed in order to elucidate the origin of the slow relaxation of the magnetization in a Dy(2) single-molecule magnet (SMM). The doping effect was studied using SQUID and micro-SQUID measurements on a Dy(2) SMM diluted in a diamagnetic Y(2) matrix. The quantum tunneling of the magnetization that can occur was suppressed by applying optimum dc fields. The dominant single-ion relaxation was found to be entangled with the neighboring Dy(III) ion relaxation within the molecule, greatly influencing the quantum tunneling of the magnetization in this complex.  相似文献   

2.
In the research field of single-molecule magnets (SMMs), lanthanoid–lanthanoid interactions, so-called f–f interactions, are known to affect the SMM properties, although their magnitudes are small. In this article, an SMM with very weak f–f interactions is reported, and the effects of the interactions on the SMM properties are discussed. X-ray structural analysis of the DyIII-CdII-phthalocyaninato sextuple-decker complex (Dy2Cd3) reveals that the intramolecular Dy−Dy length in Dy2Cd3 is more than 13 Å, which is longer than the intermolecular Dy−Dy length. Even though the two DyIII ions are far apart, intermolecular ferromagnetic dipole–dipole interactions are observed in Dy2Cd3. From detailed analysis of ac magnetic susceptibilities, quantum tunneling of the magnetization (QTM) in Dy2Cd3 is partially suppressed owing to the existence of very weak Dy−Dy interactions. Our results show that even very weak Dy−Dy interactions act as a dipolar bias, suppressing QTM.  相似文献   

3.
The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.  相似文献   

4.
The reaction of [Ln(hfac)(3) ]?2?H(2) O and pyridine-N-oxide (PyNO) leads to isostructural dimers of the formula [Ln(hfac)(3) (PyNO)](2) (Ln=Eu, Gd, Tb, Dy). The Dy derivative shows a remarkable single-molecule magnet behavior with complex hysteresis at 1.4?K. The dynamics of the magnetization features are two relaxation regimes: a thermally activated one at high temperature (τ(0) =(5.62±0.4)×10(-11) s and Δ=(167±1)?K) and a quantum tunneling regime at low temperature with a tunneling frequency of 0.42?Hz. The analysis of the Gd derivative evidences intradimer antiferromagnetic interactions (J=(-0.034±0.001)?cm(-1) ). Moreover, the Eu, Tb, and Dy derivatives are luminescent with quantum yield of 51, 53, and 0.1?%, respectively. The thermal investigation of [Dy(hfac)(3) (PyNO)](2) shows that the dimers can be sublimated intact, suggesting their possible exploit as active materials for surface-confined nanostructures to be investigated by fluorimetry methods.  相似文献   

5.
Lanthanide ions are supposed to be promising candidates for the elements of single-molecule magnets (SMMs) because of the large magnetic momentum and anisotropy. We have established the [Dy2Cu] complex as a new SMM. A plausible mechanism for quantum tunneling of magnetization is proposed for the first time among the 4f-3d heterometallic SMMs. The magnetic coupling parameter between Dy and Cu ions was well-defined as -0.155 K.  相似文献   

6.
The preparation of a new family of mixed transition metal/lanthanide clusters is reported. The reaction of [Mn3O(O2CPh)6(py)2(H2O)] with Ln(NO3)3 (Ln = Nd, Gd, Dy, Ho, and Eu) in a 1:2 molar ratio in MeOH/MeCN (1:20 v/v) leads to dark crystals in 55-60% isolated yield of complexes all containing the [Mn11Ln4]45+ core. The Dy compound has been found to give out-of-phase AC susceptibility signals, suggesting it might be a single-molecule magnet (SMM). This was confirmed by the observation of magnetization hysteresis loops. An Arrhenius plot constructed from magnetization decay data gave a barrier to relaxation of 9.3 K and showed the temperature-independent relaxation at very low temperatures indicative of quantum tunneling of magnetization. This is the initial demonstration of hysteresis and quantum behavior in a mixed 3d/4f SMM.  相似文献   

7.
The SMM properties of the spatially closed Dy(III) double-decker Pc complex Dy(obPc)2 (1), which is equivalent to a pseudo dinuclear complex, are reported. Complex 1 crystallized with ethanol in the crystal lattice in the monoclinic space group P21/n and was isomorphous with Tb(obPc)2 (3), which is arranged in a dimer structure along the b axis. The intermetallic Dy-Dy distance was determined to be 0.756 nm. ?? M T versus T plots for 1 decreased with a decrease in T, which suggests the existence of an antiferromagnetic (AF) interaction between the Dy3+ ions. The M-H curve for 1 at 1.8 K showed magnetic hysteresis. In ac susceptibility measurements on a powder sample of 1, which were dependent on the applied ac field, indicating that 1 is an single molecule magnet (SMM), a maximum appeared at 22 K at an ac frequency (f) of 1488 Hz. The shape of the peaks drastically changed, and the peaks did not shift when an H dc large enough to suppress the quantum tunneling of the magnetization (QTM) was applied. The energy barrier (??/hc) was estimated to be 44 cm?1 with a pre-exponential factor (?? 0) of 1.6 × 10?5 s from an Arrhenius plot. Our results suggest that the SMM/magnetic properties of 1 significantly change in a dc magnetic field. These relaxation mechanisms are related to the energy gap of the ground state and to QTM.  相似文献   

8.
Li M  Lan Y  Ako AM  Wernsdorfer W  Anson CE  Buth G  Powell AK  Wang Z  Gao S 《Inorganic chemistry》2010,49(24):11587-11594
We present the syntheses, crystal structures, and magnetochemical characterizations for a family of isostructural [Mn(4)Ln(4)] compounds (Ln = Sm, Gd, Tb, Dy, Ho, Er, and Y). They were prepared from the reactions of formic acid, propionic acid, N-n-butyl-diethanolamine, manganese perchlorate, and lanthanide nitrates under the addition of triethylamine in MeOH. The compounds possess an intriguing hetero-octanuclear wheel structure with four Mn(III) and four Ln(III) ions alternatively arranged in a saddle-like ring, where formate ions act as key carboxylate bridges. In the lattice, the molecules stack into columns in a quasi-hexagonal arrangement. Direct current (dc) magnetic susceptibility measurements indicated the depopulation of the Stark components at low temperature and/or very weak antiferromagnetic interactions between magnetic centers. The zero-field alternating current (ac) susceptibility studies revealed that the compounds containing Sm, Tb, and Dy showed frequency-dependent out-of-phase signals, indicating they are single-molecule magnets (SMMs). Magnetization versus applied dc field sweeps on a single crystal of the Dy compound down to 40 mK exhibited hysteresis depending on temperatures and field sweeping rates, further confirming that the Dy compound is a SMM. The magnetization dynamics of the Sm and Y compounds investigated under dc fields revealed that the relaxation of the Sm compound is considered to be dominated by the two-phonon (Orbach) process while the Y compound displays a multiple relaxation process.  相似文献   

9.
A family of five dinuclear lanthanide complexes has been synthesized with general formula [Ln(III)(2)(valdien)(2)(NO(3))(2)] where (H(2)valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine) and Ln(III) = Eu(III)1, Gd(III)2, Tb(III)3, Dy(III)4, and Ho(III)5. The magnetic investigations reveal that 4 exhibits single-molecule magnet (SMM) behavior with an anisotropic barrier U(eff) = 76 K. The step-like features in the hysteresis loops observed for 4 reveal an antiferromagnetic exchange coupling between the two dysprosium ions. Ab initio calculations confirm the weak antiferromagnetic interaction with an exchange constant J(Dy-Dy) = -0.21 cm(-1). The observed steps in the hysteresis loops correspond to a weakly coupled system similar to exchange-biased SMMs. The Dy(2) complex is an ideal candidate for the elucidation of slow relaxation of the magnetization mechanism seen in lanthanide systems.  相似文献   

10.
Xu GF  Gamez P  Tang J  Clérac R  Guo YN  Guo Y 《Inorganic chemistry》2012,51(10):5693-5698
[Dy(III)(HBpz(3))(2)](2+) moieties (HBpz(3)(-) = hydrotris(pyrazolyl)borate) and a 3d transition-metal ion (Fe(III) or Co(III)) have been rationally assembled using an dithiooxalato dianion ligand into 3d-4f [MDy(3)(HBpz(3))(6)(dto)(3)]·4CH(3)CN·2CH(2)Cl(2) (M = Fe (1), Co (2) complexes. Single-crystal X-ray studies reveal that three eight-coordinated Dy(III) centers in a square antiprismatic coordination environment are connecting to a central octahedral trivalent Fe or Co ion forming a propeller-type complex. The dynamics of the magnetization in the two isostructural compounds, modulated by the nature of the central M(III) metal ion, are remarkably different despite their analogous direct current (dc) magnetic properties. The slow relaxation of the magnetization observed for 2 mainly originates from isolated Dy ions, since a diamagnetic Co(III) metal ion links the magnetic Dy(III) ions. In the case of 1, the magnetic interaction between S = 1/2 Fe(III) ion and the three Dy(III) magnetic centers, although weak, generates a complex energy spectrum of magnetic states with low-lying excited states that induce a smaller energy gap than for 2 and thus a faster relaxation of the magnetization.  相似文献   

11.
A series of six‐coordinate lanthanide complexes {(H3O)[Ln(NA)2]?H2O}n (H2NA=5‐hydroxynicotinic acid; Ln=GdIII ( 1?Gd ); TbIII ( 2?Tb ); DyIII ( 3?Dy ); HoIII ( 4?Ho )) have been synthesized from aqueous solution and fully characterized. Slow relaxation of the magnetization was observed in 3?Dy . To suppress the quantum tunneling of the magnetization, 3?Dy diluted by diamagnetic YIII ions was also synthesized and magnetically studied. Interesting butterfly‐like hysteresis loops and an enhanced energy barrier for the slow relaxation of magnetization were observed in diluted 3?Dy . The energy barrier (Δτ) and pre‐exponential factor (τ0) of the diluted 3?Dy are 75 K and 4.21×10?5 s, respectively. This work illustrates a successful way to obtain low‐coordination‐number lanthanide complexes by a framework approach to show single‐ion‐magnet‐like behavior.  相似文献   

12.
High-field electron paramagnetic resonance spectra were collected at several frequencies for a single crystal of [Zn3.91Ni0.09(hmp)4(dmb)4Cl4] (1), where dmb is 3,3-dimethyl-1-butanol and hmp- is the monoanion of 2-hydroxymethylpyridine. This crystal is isostructural to [Ni4(hmp)4(dmb)4Cl4] (2), which has been characterized to be a single-molecule magnet (SMM) with fast quantum tunneling of its magnetization (QTM). The single Ni(II) ion zero-field-splitting (zfs) parameters Di [= -5.30(5) cm(-1)] and Ei [= +/-1.20(2) cm(-1)] in the doped complex 1 were evaluated by rotation of a crystal in three planes. The easy-axes of magnetization associated with the single-ion zfs interactions were also found to be tilted 15 degrees away from the crystallographic c direction. This inclination provides a possible explanation for the fast QTM observed for complex 2. The single-ion zfs parameters are then related to the zfs parameters for the Ni4 molecule by irreducible tensor methods to give D = -0.69 cm(-1) for the S = 4 ground state of the SMM, where the axial zfs interaction is given by DS(Z)2.  相似文献   

13.
14.
The syntheses, structural determinations and magnetic studies of tetranuclear M(II)Ln(III) complexes (M = Ni, Zn; Ln = Y, Gd, Dy) involving an in situ compartmentalized schiff base ligand HL derived from the condensation of o-vanillin and 2-hydrazinopyridine as main ligand are described. Single-crystal X-ray diffraction reveals that all complexes are closely isostructural, with the central core composed of distorted {M(2)Ln(2)O(4)} cubes of the formulas [Ni(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(4)(H(2)O)(3.5)](ClO(4))(2)·3H(2)O (Ln = Y 1 and Gd 2), [Ni(2)Dy(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)(1.5)](ClO(4))·EtOH·H(2)O (3) and [Zn(2)Ln(2)(μ(3)-OH)(2)(L)(2)(OAc)(5)(EtOH)(H(2)O)](ClO(4))·2EtOH·1.5H(2)O (Gd 4 and Dy 5). The Ln(III) ions are linked by two hydroxo bridges and each M(II) ion is also involved in a double phenoxo-hydroxo bridge with the two Ln(III) ions, so that each hydroxo group is triply linked to the two Ln(III) and one M(II) ions. The magnetic properties of all complexes have been investigated. Ni(2)Y(2) (1) has a ferromagnetic Ni(II)Ni(II) interaction. A weak ferromagnetic Ni(II)Ln(III) interaction is observed in the Ni(2)Ln(2) complexes (Ln = Gd 2, Dy 3), along with a weak antiferromagnetic Ln(III)Ln(III) interaction, a D zero-field splitting term for the nickel ion and a ferromagnetic Ni(II)Ni(II) interaction. The isomorphous Zn(2)Ln(2) (Ln = Gd 4, Dy 5) does confirm the presence of a weak antiferromagnetic Ln(III)Ln(III) interaction. The Ni(2)Dy(2) complex (3) does not behave as a SMM, which could result from a subtractive combination of the Dy and Ni anisotropies and an increased transverse anisotropy, leading to large tunnel splittings and quantum tunneling of magnetization. On the other hand, Zn(2)Dy(2) (5) exhibits a possible SMM behavior, where its slow relaxation of magnetization is probably attributed to the presence of the anisotropic Dy(III) ions.  相似文献   

15.
We are reporting the synthesis, single-crystal X-ray structure characterization, and magnetic property investigations of the pivalate butterfly {CrIII2LnIII2} complexes with Ln= Gd and Dy and the isostructural Y(III) sample. We found an anti-ferromagnetic Cr(III)-Ln(III) exchange interaction, which, as previously observed in related Cr(III)/Ln(III) systems, plays a key role in suppressing quantum tunnelling of magnetization and enhances the SMM performance in the Dy(III) complex. In fact, a pure Orbach relaxation mechanism, with absence of QT regime, is observed with a thermal barrier of 50 cm−1, leading to magnetization hysteresis opening, measured with a commercial magnetometer, up to 3.6 K with a coercive field of 2.9 T. Analysis of SMM behaviour in literature-known butterfly {CrIII2DyIII2} complexes, reveals the existence of a magneto-structural correlation between Ueff, the thermal barrier size, and the mean Cr−Dy bond distances. Moreover, a clear correlation is found for the thermal barrier magnitude and the maximum temperature hysteresis opening and coercive field.  相似文献   

16.
It is crucial to investigate the slow relaxation mechanisms of binuclear ErIII‐based single‐molecule magnets (SMMs) and explore strategies for optimizing their magnetic properties. Herein, a doped compound, [Y1.75Er0.25(thd)4Pc] ? 2C6H6 ( YEr ? 2C6H6 , Hthd=2,2,6,6‐tetramethylheptanedione, H2Pc=phthalocyanine), was synthesized by doping the paramagnetic erbium(III) compound Er2 ? 2C6H6 in the diamagnetic yttrium(III) matrix Y2 ? 2C6H6 . The doping effect was studied using SQUID magnetization measurements. The results suggest that magnetic‐site dilution improves the magnetic property from a fast relaxation of the pure ErIII compound to a typical SMM relaxation process of the doped sample. In this binuclear system, the dominant single‐ion relaxation is entangled with the neighboring ErIII ion through the intramolecular ErIII???ErIII interaction, which plays an important role in suppressing the quantum tunneling of the magnetization (QTM) process. Furthermore, the influence of lattice solvents on single‐ion relaxation was studied. By releasing the benzene molecules, compound YEr ? 2C6H6 can be successfully transformed to a desolvated sample YEr accompanied by structural alteration and improved SMM performance.  相似文献   

17.
The reaction of 2-(hydroxyethyl)pyridine (hepH) with a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3]ClO4 and [Mn3O(O2CMe)6(py)3] in MeCN afforded the new mixed-valent (16Mn(III), 2Mn(II)), octadecanuclear complex [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 20% yield. Complex 1 crystallizes in the triclinic space group P. Direct current magnetic susceptibility studies in a 1.0 T field in the 5.0-300 K range, and variable-temperature variable-field dc magnetization studies in the 2.0-4.0 K and 2.0-5.0 T ranges were obtained on polycrystalline samples. Fitting of magnetization data established that complex 1 possesses a ground-state spin of S = 13 and D = -0.18 K. This was confirmed by the value of the in-phase ac magnetic susceptibility signal. Below 3 K, the complex exhibits a frequency-dependent drop in the in-phase signal, and a concomitant increase in the out-of-phase signal, consistent with slow magnetization relaxation on the ac time scale. This suggests the complex is a single-molecule magnet (SMM), and this was confirmed by hysteresis loops below 1 K in magnetization versus dc field sweeps on a single crystal. Alternating current and direct current magnetization data were combined to yield an Arrhenius plot from which was obtained the effective barrier (U(eff)) for magnetization reversal of 21.3 K. Below 0.2 K, the relaxation becomes temperature-independent, consistent with relaxation only by quantum tunneling of the magnetization (QTM) through the anisotropy barrier via the lowest-energy MS = +/-13 levels of the S = 13 spin manifold. Complex 1 is thus the SMM with the largest ground-state spin to display QTM.  相似文献   

18.
A new magnetic relaxation phenomenon for an Ising dimer of a Tb-phthalocyaninato triple-decker SMM Tb2(obPc)3 (1) is reported. In Argand plots, the magnetic relaxation splits from a one-component system into a two-component system (temperature-independent and temperature-dependent regimes) in a dc magnetic field. There was clear evidence that the magnetic relaxation mechanisms for the Tb3+ dimer depended heavily on the temperature and the dc magnetic field. The relationships among the molecular structure, ligand field, ground state, and SMM properties in a direct current (dc) magnetic field are discussed. Furthermore, in order to investigate the stability of the complexes in vacuum evaporation (dry) process and the control of their surface morphology after transferring to a surface, we studied the lanthanoid-phthalocyaninato triple-decker molecule Y2Pc3 deposited on a Au(1 1 1) surface using a low-temperature scanning tunneling microscope. It is important to both understand and control the quantum properties of Ln-Pc multiple-decker SMMs with an external field and the monolayer or multi-layer structures on a substrate for next generation devices, such as magnetic information storage.  相似文献   

19.
Star-shaped complex [Fe(III)[Fe(III)(L1)2]3] (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by M?ssbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane. The unit cell of 3.4CHCl3 contains the enantiomers (delta)-[(S,S)(R,R)(R,R)] and (lambda)-[(R,R)(S,S)(S,S)], whereas in case of 3.3CH2Cl2 four independent molecules, forming pairs of the enantiomers [lambda-(R,R)(R,R)(R,R)]-3 and [lambda-(S,S)(S,S)(S,S)]-3, were observed in the unit cell. According to SQUID measurements, the antiferromagnetic intramolecular coupling of the iron(III) ions in 3 results in a S = 10/2 ground state multiplet. The anisotropy is of the easy-axis type. EPR measurements enabled an accurate determination of the ligand-field splitting parameters. The ferric star 3 is a single-molecule magnet (SMM) and shows hysteretic magnetization characteristics below a blocking temperature of about 1.2 K. However, weak intermolecular couplings, mediated in a chainlike fashion via solvent molecules, have a strong influence on the magnetic properties. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to determine the structural and electronic properties of star-type tetranuclear iron(III) complex 3. The molecules were deposited onto highly ordered pyrolytic graphite (HOPG). Small, regular molecule clusters, two-dimensional monolayers as well as separated single molecules were observed. In our STS measurements we found a rather large contrast at the expected locations of the metal centers of the molecules. This direct addressing of the metal centers was confirmed by DFT calculations.  相似文献   

20.
[Mn4(hmp)6(H2O)2(NO3)2](NO3)2.2.5H2O (1) has been synthesized from the reaction of 2-hydroxymethylpyridine (Hhmp) with Mn(NO3)2.4H2O in the presence of tetraethylammonium hydroxide. 1 crystallizes in the triclinic P space group with two crystallographically independent centrosymmetrical [Mn4(hmp)6(H2O)2(NO3)2]2+ complexes in the packing structure. Four Mn ions are arranged in a double-cuboidal fashion where outer Mn2+ are heptacoordinated and inner Mn3+ are hexacoordinated. dc magnetic measurements show that both Mn2+...Mn3+ and Mn3+...Mn3+ interactions are ferromagnetic with J(wb)/k(B) = +0.80(5) K, and J(bb)/k(B) = +7.1(1) K, respectively, leading to an S(T) = 9 ground state. Combined ac and dc measurements reveal the single-molecule magnet (SMM) behavior of 1 with both thermally activated and ground-state tunneling regimes, including quantum phase interference. In the thermally activated regime, the characteristic relaxation time (tau) of the system follows an Arrhenius law with tau0 = 6.7 x 10(-)(9) s and delta(eff)/k(B) = 20.9 K. Below 0.34 K, tau saturates indicating that the quantum tunneling of the magnetization becomes the dominant relaxation process as expected for SMMs. Down to 0.04 K, field dependence of the magnetization measured using the mu-SQUID technique shows the presence of very weak inter-SMM interactions (zJ'/k(B) approximately -1.5 x 10(-3) K) and allows an estimation of D/k(B) at -0.35 K. Quantum phase interference has been used to confirm the D value and to estimate the transverse anisotropic parameter to E/k(B) = +0.083 K and the ground-state tunnel splitting delta(LZ) = 3 x 10(-7) K at H(trans) = 0 Oe. These results rationalize the observed tunneling time (tau(QTM)) and the effective energy barrier (delta(eff)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号