首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
黄海  贺锋  孙航宾 《物理学报》2012,61(11):110403-110403
利用广义不确定关系修正的态密度方程并采用Wentzel-Kramers-Brillouin (WKB) 近似方法, 计算了Reissner-Nordström-de Sitter (RNdS) 黑洞时空中标量场的统计力学熵. 结果表明, 由这种方法得到的黑洞熵与它的内、外视界面积和宇宙视界面积之和成正比, 这与采用其他方法所得的结果一致, 从而揭示了黑洞熵与视界面积之间的内在联系, 也进一步表明了黑洞熵是视界面上量子态的熵, 是一种量子效应.  相似文献   

2.
We present a quantum-mechanical analysis of Szilard's famous single-molecule engine, showing that it is analogous to the double-slit experiment. We further show that the energy derived from the engine's operation is provided by the act of observing the molecule's location. The engine can be operated with no increase in physical entropy, and the second law of thermodynamics does not compel us to relate physical entropy to informational entropy. We conclude that information per seis a subjective, idealized, concept separated from the physical realm. Physical entropy depends on physical objects and physical interactions, and any entropy change owing to observations is entirely a result of the entropy created in the physical apparatus by the process of observation.  相似文献   

3.
Taking into account the effect of the generalized uncertainty principle on the generalized black hole entropy and tacking the thin film brick-wall model, we calculate the entropy of the quantum scalar field in generalized static black hole. The Bekenstein–Hawking entropies of all well-known static black holes are obtained. The entropy of 2-D membrane just at the event horizon of static black hole is also calculated, and the result of the black hole entropy proportional to the event horizon area can be obtained more easily and generally. This discussion shows that black hole entropy is just identified with the entropy of the quantum field on the event horizon. The difference from the original brick-wall model is that the present result is convergent without any cutoff and the little mass approximation is removed. With residue theorem, the integral difficulty in the calculation of black hole entropy is overcome.  相似文献   

4.
The Rényi entropy is a generalization of the usual concept of entropy which depends on a parameter q. In fact, Rényi entropy is closely related to free energy. Suppose we start with a system in thermal equilibrium and then suddenly divide the temperature by q. Then the maximum amount of work the system can perform as it moves to equilibrium at the new temperature divided by the change in temperature equals the system’s Rényi entropy in its original state. This result applies to both classical and quantum systems. Mathematically, we can express this result as follows: the Rényi entropy of a system in thermal equilibrium is without the ‘q1-derivative’ of its free energy with respect to the temperature. This shows that Rényi entropy is a q-deformation of the usual concept of entropy.  相似文献   

5.
Based on the ideas of adiabatic invariant quantity, we attempt to quantize the entropy of a charged black hole in de Sitter spacetime in two different coordinates. The entropy spectrum is obtained by imposing Bohr-Sommerfeld quantization rule and the laws of black hole thermodynamics to the modified adiabatic covariant action of the charged black hole. The result shows that the spacing of entropy spectrum is equidistant, and the corresponding horizon area quantum is identical to Bekenstein’s result. Interestingly, in contrast to the quasinormal mode analysis, we note that there is no need to impose the small charge limit for the obtained entropy spectrum of the charged black hole. We also note that the modified adiabatic covariant action gives the same value for the black hole entropy spectrum in different coordinate frames. This is a physically desired result since the entropy spectrum should be invariant under the coordinate transformations.  相似文献   

6.
We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805–830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker’s inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.  相似文献   

7.
Some problems of describing biological systems with the use of entropy as a measure of the complexity of these systems are considered. Entropy is studied both for the organism as a whole and for its parts down to the molecular level. Correlation of actions of various parts of the whole organism, intercellular interactions and control, as well as cooperativity on the microlevel lead to a more complex structure and lower statistical entropy. For a multicellular organism, entropy is much lower than entropy for the same mass of a colony of unicellular organisms. Cooperativity always reduces the entropy of the system; a simple example of ligand binding to a macromolecule carrying two reaction centers shows how entropy is consistent with the ambiguity of the result in the Bernoulli test scheme. Particular attention is paid to the qualitative and quantitative relationship between the entropy of the system and the cooperativity of ligand binding to macromolecules. A kinetic model of metabolism. corresponding to Schrödinger’s concept of the maintenance biosystems by “negentropy feeding”, is proposed. This model allows calculating the nonequilibrium local entropy and comparing it with the local equilibrium entropy inherent in non-living matter.  相似文献   

8.
Simplifying Dirac equation near the horizon, Hawking temperature is obtained by applying a new tortoise coordinate transformation. Using the improved thin film brick-wall model and WKB approximation, the entropy of Dirac field in the non-stationary and slowly changing Reissner-Nordström black hole is calculated. The result shows that the entropy of the black hole is still proportional to the horizon area, and black hole entropy is just identical to the entropy of the quantum state at the horizon. In addition, the new tortoise coordinate transformation can make the cut-off parameter introduced in solving the entropy of non-stationary black hole simplified to the same as that in the static and stationary cases.  相似文献   

9.
We propose a generalized entropy maximization procedure, which takes into account the generalized averaging procedures and information gain definitions underlying the generalized entropies. This novel generalized procedure is then applied to Rényi and Tsallis entropies. The generalized entropy maximization procedure for Rényi entropies results in the exponential stationary distribution asymptotically for q∈(0,1] in contrast to the stationary distribution of the inverse power law obtained through the ordinary entropy maximization procedure. Another result of the generalized entropy maximization procedure is that one can naturally obtain all the possible stationary distributions associated with the Tsallis entropies by employing either ordinary or q-generalized Fourier transforms in the averaging procedure.  相似文献   

10.
陈式刚  王友琴 《物理学报》1983,32(2):209-215
用数值方法对Rayleigh-Bénard流中的波长增长现象作了分析,得到了与实验一致的结果。稳定性和熵产生的计算表明,关于定态相对稳定性的最大熵产生判据是正确的。 关键词:  相似文献   

11.
Taking into account the Bekenstein-Hawking area law,based on the analysis of Zeng and Liu et al.that area spectrum is determined by the periodicity of an outgoing wave,we discuss on the quantization of entropy from a neutral black string.In addition,applying the adiabatic invariant quantity method proposed by Majhi and Vagenas,we further verify the entropy quantum of the neutral black string.As a result,two different methods show that the quantum of entropy is Δ S=2π,which is in agreement with Bekenstein's proposal.  相似文献   

12.
The discrete area spectrum was derived by the adiabatic invariance without quasinormal modes in recent work. In this paper, we extend this work to charged black holes and investigate the entropy spectrum of a plane symmetric black hole. The result shows that the minimal spacing of the entropy spectrum is 2π and that of the area spectrum is dependent on the theory frame of gravity.  相似文献   

13.
A definition of network entropy is presented, and as an example, the relationship between the value of network entropy of ER network model and the connect probability p as well as the total nodes N is discussed. The theoretical result and the simulation result based on the network entropy of the ER network are in agreement well with each other. The result indicated that different from the other network entropy reported before, the network entropy defined here has an obvious difference from different type of random networks or networks having different total nodes. Thus, this network entropy may portray the characters of complex networks better. It is also pointed out that, with the aid of network entropy defined, the concept of equilibrium networks and the concept of non-equilibrium networks may be introduced, and a quantitative measurement to describe the deviation to equilibrium state of a complex network is carried out.  相似文献   

14.
Hawking radiation from the black hole in Ho?ava–Lifshitz gravity is discussed by a reformulation of the tunneling method given in Banerjee and Majhi (2009) [17]. Using a density matrix technique the radiation spectrum is derived which is identical to that of a perfect black body. The temperature obtained here is proportional to the surface gravity of the black hole as occurs in usual Einstein gravity. The entropy is also derived by using the first law of black hole thermodynamics. Finally, the spectrum of entropy/area is obtained. The latter result is also discussed from the viewpoint of quasi-normal modes. Both methods lead to an equispaced entropy spectrum, although the value of the spacing is not the same. On the other hand, since the entropy is not proportional to the horizon area of the black hole, the area spectrum is not equidistant, a finding which also holds for the Einstein–Gauss–Bonnet theory.  相似文献   

15.
Distance measures between quantum states like the trace distance and the fidelity can naturally be defined by optimizing a classical distance measure over all measurement statistics that can be obtained from the respective quantum states. In contrast, Petz showed that the measured relative entropy, defined as a maximization of the Kullback–Leibler divergence over projective measurement statistics, is strictly smaller than Umegaki’s quantum relative entropy whenever the states do not commute. We extend this result in two ways. First, we show that Petz’ conclusion remains true if we allow general positive operator-valued measures. Second, we extend the result to Rényi relative entropies and show that for non-commuting states the sandwiched Rényi relative entropy is strictly larger than the measured Rényi relative entropy for \(\alpha \in (\frac{1}{2}, \infty )\) and strictly smaller for \(\alpha \in [0,\frac{1}{2})\). The latter statement provides counterexamples for the data processing inequality of the sandwiched Rényi relative entropy for \(\alpha < \frac{1}{2}\). Our main tool is a new variational expression for the measured Rényi relative entropy, which we further exploit to show that certain lower bounds on quantum conditional mutual information are superadditive.  相似文献   

16.
17.
A recent assertion that inertial and gravitational forces are entropic forces is discussed. A more conventional approach is stressed herein, whereby entropy is treated as a result of relative motion between observers in different frames of reference. It is demonstrated that the entropy associated with inertial and gravitational forces is dependent upon the well known lapse function of general relativity. An interpretation of the temperature and entropy of an accelerating body is then developed, and used to relate the entropic force to Newton's second law of motion. The entropic force is also derived in general coordinates. An expression of the gravitational entropy of in‐falling matter is then derived by way of Schwarzschild coordinates. As a final consideration, the entropy of a weakly gravitating matter distribution is shown to be proportional to the self‐energy and the stress‐energy‐momentum content of the matter distribution.  相似文献   

18.
We calculate the entanglement entropy for a sphere and a massless scalar field in any dimensions. The reduced density matrix is expressed in terms of the infinitesimal generator of conformal transformations keeping the sphere fixed. The problem is mapped to the one of a thermal gas in a hyperbolic space and solved by the heat kernel approach. The coefficients of the logarithmic term in the entropy for 2 and 4 spacetime dimensions are in accordance with previous numerical and analytical results. In particular, the four-dimensional result, together with the one reported by Solodukhin, gives support to the Ryu–Takayanagi holographic ansatz. We also find that there is no logarithmic contribution to the entropy for odd spacetime dimensions.  相似文献   

19.
黄海  贺锋  孙航宾 《物理学报》2012,61(11):112-116
利用广义不确定关系修正的态密度方程并采用Wentzel-Kramers-Brillouin(WKB)近似方法,计算了Reissner-Nordstrm-de Sitter(RNdS)黑洞时空中标量场的统计力学熵.结果表明,由这种方法得到的黑洞熵与它的内、外视界面积和宇宙视界面积之和成正比,这与采用其他方法所得的结果一致,从而揭示了黑洞熵与视界面积之间的内在联系,也进一步表明了黑洞熵是视界面上量子态的熵,是一种量子效应.  相似文献   

20.
将广义不确定关系引入新的态密度方程,采用WKB近似方法,对含整体单极黑洞Dirac场的熵进行了直接计算,所得黑洞熵与它的视界面积成正比,以此揭示了黑洞熵是其视界面处量子态的熵.与brick-wall模型方法不同,该结果不需要取任何截断.同时表明,用此方法不仅可以计算黑洞标量场的熵,而且可以计算Dirac场的熵.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号