首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the evolution of spatially homogeneous and isotropic FRW cosmological model with bulk-viscosity in the frame work of Barber’s (Gen. Relativ. Gravit. 14: 117, 1982) second self-creation theory of gravitation. The cosmological models are obtained with the help of special law of variation for Hubble parameter proposed by Bermann (Nuovo Cimento 74B: 182, 1983). Physical parameters of the models have been discussed in case of false vacuum model, Zel’dovich fluid and radiation dominated fluid.  相似文献   

2.
Bianchi type-III space time is considered in the presence of perfect fluid source in the scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961). With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) a cosmological model with negative constant deceleration parameter is obtained in the presence of perfect fluid with disordered radiation. Some physical and kinematical properties of the model are also discussed.  相似文献   

3.
An axially symmetric Bianchi type-I space time with variable equation of state (EoS) parameter and constant deceleration parameter has been investigated in scale covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39:429, 1977). With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) a dark energy cosmological model is obtained in this theory. Some physical and kinematical properties of the model are also discussed.  相似文献   

4.
We have investigated cosmological model with strange quark matter attached to the string cloud in general theory of gravitation for Axially Symmetric space time. The model is obtained with the help of special law of variation for Hubble parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983). Also, some physical and kinematics properties of the model are discussed.  相似文献   

5.
In this paper, we have investigated spatially homogeneous isotropic Friedman-Robertson-Walker cosmological model with bulk viscosity and zero-mass scalar field in the frame work of Barber’s second self-creation theory (Gen. Relativ. Gravit. 14:117, 1982). The cosmological models are obtained with the help of the special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74:182, 1983) and power law relation. Some physical properties of the models are also discussed.  相似文献   

6.
7.
An exact Bianchi type-VI string cosmological model is obtained in a scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. 113:467, 1985). Some physical properties of the model are also discussed.  相似文献   

8.
Axially symmetric Bianchi type-I cosmological micro model is obtained in Barber’s (Gen. Relativ. Gravit. 14:117, 1982) modified theory of general relativity. Some properties of the model are discussed.  相似文献   

9.
We investigate the relation between the brane-based and the bulk-based approaches for anisotropic case in brane-world models. In the brane-based approach, the brane is chosen to be fixed on a coordinate system, whereas in the bulk-based approach it is no longer static as it moves along the extra dimension. It was shown that these two approaches are equivalent for specific models in Mukohyama et al. (Phys Rev D 62:024028, 2000), Bowcock et al. (Class Quant Gravit 17:4745–4764, 2000). In this paper, it is aimed to get general formalism of the equivalence obtained in Mukohyama et al. (Phys Rev D 62:024028, 2000). We found that calculations driven by a general anisotropic bulk-based metric yield a brane-based metric in Gaussian Normal Coordinates by conserving spatial anisotropy. We also derive solutions for an anisotropic bulk-based model and get the corresponding brane-based metric of the model.  相似文献   

10.
We have obtained an exact solution of the vacuum Brans-Dicke (Phys. Rev. 124:925, 1961) field equations for the metric tensor of a spatially homogeneous and anisotropic model. Some physical properties of the model are also studied.  相似文献   

11.
We extend the work of Thirukkanesh and Maharaj (Class Quantum Gravity 25:235001, 2007) by considering quadratic equation of state for the matter distribution to study the general situation of a compact relativistic body. Presence of electromagnetic field and anisotropy in the pressure are also assumed. Some new classes of static spherically symmetrical models of relativistic stars are obtained. All the results given in Thirukkanesh and Maharaj (Class Quantum Gravity 25:235001, 2007) and there in can also be recovered as a particular case of our work.  相似文献   

12.
An exact higher dimensional LRS Bianchi type-I cosmological model is obtained in presence of thick domain walls in a scalar tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A113:467, 1985). Some physical and kinematical properties of the models are also discussed.  相似文献   

13.
In this paper, we study the macroscopic limit of a new model of collective displacement. The model, called PTWA, is a combination of the Vicsek alignment model (Vicsek et al. in Phys. Rev. Lett. 75(6):1226–1229, 1995) and the Persistent Turning Walker (PTW) model of motion by curvature control (Degond and Motsch in J. Stat. Phys. 131(6):989–1021, 2008; Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTW model was designed to fit measured trajectories of individual fish (Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTWA model (Persistent Turning Walker with Alignment) describes the displacements of agents which modify their curvature in order to align with their neighbors. The derivation of its macroscopic limit uses the non-classical notion of generalized collisional invariant introduced in (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008). The macroscopic limit of the PTWA model involves two physical quantities, the density and the mean velocity of individuals. It is a system of hyperbolic type but is non-conservative due to a geometric constraint on the velocity. This system has the same form as the macroscopic limit of the Vicsek model (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008) (the ‘Vicsek hydrodynamics’) but for the expression of the model coefficients. The numerical computations show that the numerical values of the coefficients are very close. The ‘Vicsek Hydrodynamic model’ appears in this way as a more generic macroscopic model of swarming behavior as originally anticipated.  相似文献   

14.
Five dimensional Kaluza-Klein Space-time is considered in the presence of thick domain walls in the scalar-tensor theory formulated by Brans and Dicke (Phys. Rev. 124:925, 1961). Exact cosmological model, in this theory, is presented with the help of special law of variation proposed by Berman (Nuovo Cim. B 74:182, 1983) for Hubble’s parameter. Some physical and kinematical properties of the model are also discussed.  相似文献   

15.
Spatially homogeneous and anisotropic LRS Bianchi type-I metric is considered in the framework of Nordtvedt-Barker’s general scalar-tensor theory of gravitation when the source for the energy momentum tensor is a perfect fluid. With the help of a special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cim. B. 74:182, 1983) a cosmological model with negative constant deceleration parameter is obtained. Some physical and kinematical properties of the model are also discussed.  相似文献   

16.
A new dark energy model in anisotropic Bianchi type-I (B-I) space-time with time dependent equation of state (EoS) parameter and constant deceleration parameter has been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter (Berman in Il Nuovo Cimento B 74:182, 1983) which generates two types of solutions, one is of power-law type and other is of the exponential form. The existing range of the dark energy EoS parameter ω for derived model is found to be in good agreement with the three recent observations (i) SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004) and (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. Ser. 180:225, 2009 and Komatsu et al. in Astrophys. J. Suppl. Ser. 180:330, 2009). The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by results from recent supernovae Ia observations. It has also been suggested that the dark energy that explains the observed accelerating universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Geometric and kinematic properties of the model and the behaviour of the anisotropy of the dark energy have been carried out.  相似文献   

17.
Bianchi type-I dark energy model with variable equation of state (EoS) parameter is presented in a scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961). To get a determinate solution of the field equations we will take the help of special law of variation for Hubble’s parameter presented by Bermann (Nuovo Cimento B. 74:182, 1983) which yields a dark energy cosmological model with negative constant deceleration parameter. It is observed that this dark energy cosmological model always represents an accelerated and expanding universe and also consistent with the recent observations of type-Ia supernovae. Some physical and geometrical properties of the model are also discussed.  相似文献   

18.
Quark masses are of great prominence in high-energy physics. In this paper, we have studied the heavy meson systems via solving the Lippmann-Schwinger equation by using the Martin potential for heavy quark masses. We have also attempted to use Martin potential to find an acceptable mass spectrum for heavy quarkonia. We obtained this spectrum via minimal phenomenological model (Melles in Phys. Rev. D. 62:074019, 2000).  相似文献   

19.
In this paper we study the component structure of random graphs with independence between the edges. Under mild assumptions, we determine whether there is a giant component, and find its asymptotic size when it exists. We assume that the sequence of matrices of edge probabilities converges to an appropriate limit object (a kernel), but only in a very weak sense, namely in the cut metric. Our results thus generalize previous results on the phase transition in the already very general inhomogeneous random graph model introduced by the present authors in Random Struct. Algorithms 31:3–122 (2007), as well as related results of Bollobás, Borgs, Chayes and Riordan (Ann. Probab. 38:150–183, 2010), all of which involve considerably stronger assumptions. We also prove corresponding results for random hypergraphs; these generalize our results on the phase transition in inhomogeneous random graphs with clustering (Random Struct. Algorithms, 2010, to appear).  相似文献   

20.
A convenient tool for studying nuclei being far away from the beta stability line is the complex energy shell model (CXSM) in which the Berggren representation (Nucl. Phys. A 109:265, 1968) (BR) is used. The BR is formed from bound, resonant sates, and complex-energy scattering states. The parameters of isobaric analog resonance (IAR) are calculated in the framework of the Lane-model (Nucl. Phys. A 35:676, 1962) using CXSM. The novel feature of the present CXSM calculation is that the optical potentials used are complex. Results of the CXSM calculation are checked against those of the standard solution of the coupled channel Lane-equations (CC). The IAR parameters calculated by the CXSM agree well with that of the CC results for absorptive and emittive optical potentials. This agreement confirms the applicability of the CXSM calculation for complex potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号