首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we have investigated the validity of the generalized second law of thermodynamics in logamediate and intermediate scenarios of the universe bounded by the Hubble, apparent, particle and event horizons using and without using first law of thermodynamics. We have observed that the GSL is valid for Hubble, apparent, particle and event horizons of the universe in the logamediate scenario of the universe using first law and without using first law. Similarly the GSL is valid for all horizons in the intermediate scenario of the universe using first law. Also in the intermediate scenario of the universe, the GSL is valid for Hubble, apparent and particle horizons but it breaks down whenever we consider the universe enveloped by the event horizon.  相似文献   

2.
In this paper, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon. Here we consider homogeneous and isotropic model of the universe filled with perfect fluid in one case and in another case holographic model of the universe has been considered. In the third case the matter in the universe is taken in the form of non-interacting two fluid system as holographic dark energy and dust. Here we study the above cases in the Modified gravity, f(R) gravity.  相似文献   

3.
In this work, we have considered the magnetic universe in non-linear electrodynamics. The Einstein field equations for non-flat FRW model have been considered when the universe is filled with the matter and magnetic field only. We have discussed the validity of the generalized second law of thermodynamics of the magnetic universe bounded by Hubble, apparent, particle and event horizons using Gibbs? law and the first law of thermodynamics for interacting and non-interacting scenarios. It has been shown that the GSL is always satisfied for Hubble, apparent and particle horizons but for event horizon, the GSL is violated initially and satisfied at late stage of the universe.  相似文献   

4.
5.
In this paper, we examine the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in brane-world gravity. Here we consider a homogeneous and isotropic model of the universe in the one case where it is filled with a perfect fluid and in another case where a holographic dark energy model of the universe has been considered.  相似文献   

6.
In this work, we have considered that the flat FRW universe is filled with the mixture of dark matter and the new holographic dark energy. If there is an interaction, we have investigated the natures of deceleration parameter, statefinder and Om diagnostics. We have examined the validity of the first and generalized second laws of thermodynamics under these interactions on the event as well as apparent horizon. It has been observed that the first law is violated on the event horizon. However, the generalized second law is valid throughout the evolution of the universe enveloped by the apparent horizon. When the event horizon is considered as the enveloping horizon, the generalized second law is found to break down excepting at late stage of the universe.  相似文献   

7.
In the framework of Fractional Action Cosmology (FAC), we study the generalized second law of thermodynamics for the Friedmann Universe enclosed by a boundary. We use the four well-known cosmic horizons as boundaries namely, apparent horizon, future event horizon, Hubble horizon and particle horizon. We construct the generalized second law (GSL) using and without using the first law of thermodynamics. To check the validity of GSL, we express the law in the form of four different scale factors namely emergent, logamediate, intermediate and power law. For Hubble, apparent and particle horizons, the GSL holds for emergent and logamediate expansions of the universe when we apply with and without using first law. For intermediate scenario, the GSL is valid for Hubble, apparent, particle horizons when we apply with and without first law. Also for intermediate scenario, the GSL is valid for event horizon when we apply first law but it breaks down without using first law. But for power law expansion, the GSL may be valid for some cases and breaks down otherwise.  相似文献   

8.
Here we consider our universe as inhomogeneous spherically symmetric Lema [^(i)]{\hat{i}} tre−Tolman−Bondi Model and analyze the thermodynamics of this model of the universe. The trapping horizon is calculated and is found to coincide with the apparent horizon. The Einstein field equations are shown to be equivalent with the unified first law of thermodynamics. Finally assuming the first law of thermodynamics validity of the generalized second law of thermodynamics is examined at the apparent horizon for the perfect fluid and at the event horizon for holographic dark energy.  相似文献   

9.
Many astrophysics data show that our universe has a critical energy density, and 73% of it is dark energy, which drives the accelerating expansion of the universe. We consider the holographic dark energy in induced gravity by taking the Hubble scale, particle horizon and event horizon as the infrared cutoff. We find that only the event horizon can give accelerating expansion of our universe.  相似文献   

10.
Jacob Bekenstein's identification of black hole event horizon area with entropy proved to be a landmark in theoretical physics. In this paper we trace the subsequent development of the resulting generalized second law of thermodynamics (GSL), especially its extension to incorporate cosmological event horizons. In spite of the fact that cosmological horizons do not generally have well-defined thermal properties, we find that the GSL is satisfied for a wide range of models. We explore in particular the case of an asymptotically de Sitter universe filled with a gas of small black holes as a means of casting light on the relative entropic worth of black hole versus cosmological horizon area. We present some numerical solutions of the generalized total entropy as a function of time for certain cosmological models, in all cases confirming the validity of the GSL.  相似文献   

11.
Here we are trying to find the conditions for the validity of the generalized second law of thermodynamics (GSLT) assuming the first law of thermodynamics on the event horizon in both cases when the FRW universe is filled with interacting two fluid system- one in the form of cold dark matter and the other is either holographic dark energy or new age graphic dark energy.  相似文献   

12.
In this paper, we investigate the validity of the generalized second law of thermodynamics (GSLT) in the DGP braneworld when the universe is filled with interacting two fluid system: one in the form of cold dark matter and other is holographic dark energy. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon or the event horizon. The universe is chosen to be homogeneous and isotropic FRW model and the validity of the first law has been assumed here.  相似文献   

13.
In this paper we have obtained some new exact solutions of Einstein’s field equations in a spatially homogeneous and anisotropic Bianchi type-V space-time with perfect fluid distribution along with heat-conduction and decaying vacuum energy density Λ by applying the variation law for generalized Hubble’s parameter that yields a constant value of deceleration parameter. We find that the constant value of deceleration parameter is reasonable for the present day universe. The variation law for Hubble’s parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The cosmological constant Λ is found to be a decreasing function of time and positive which is corroborated by results from recent supernovae Ia observations. Expressions for look-back time-redshift, neoclassical tests (proper distance d(z)), luminosity distance red-shift and event horizon are derived and their significance are described in detail. The physical and geometric properties of spatially homogeneous and anisotropic cosmological models are discussed.  相似文献   

14.
Classical and quantum entropic properties of holographic dark energy (HDE) are considered in view of the fact that its entropy is far more restrictive than the entropy of a black hole of the same size. In cosmological settings (in which HDE is promoted to a plausible candidate for being the dark energy of the universe), HDE should be viewed as a combined state composed of the event horizon and the stuff inside the horizon. By any interaction of the subsystems, the horizon and the interior become entangled, raising thereby a possibility that their quantum correlations be responsible for the almost purity of the combined state. Under this circumstances, the entanglement entropy is almost the same for both subsystems, being also of the same order as the thermal (coarse grained) entropy of the interior or the horizon. In the context of thermodynamics, however, only additive coarse grained entropies matter, so we use these entropies to test the generalized second law (GSL) of gravitational thermodynamics in this framework. While we find that the original Li's model passes the GSL test for a special choice of parameters, in a saturated model with the choice for the IR cutoff in the form of the Hubble parameter, the GSL always breaks down.  相似文献   

15.
In this paper, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in the holographic dark energy (DE) model. The universe is chosen to be homogeneous and isotropic and the validity of the first law has been assumed here. The matter in the universe is taken in the form of non-interacting two fluid system: one component is the holographic DE model and the other component is in the form of dust.  相似文献   

16.
In the paper, we apply the weak gravity conjecture to the holographic quintessence model of dark energy. Three different holographic dark energy models are considered: without the interaction in the non-flat universe; with interaction in the flat universe; with interaction in the non-flat universe. We find that
only in the models with the spatial curvature and interaction term proportional to the energy density of matter, it is possible for the weak gravity conjecture to be satisfied. And it seems that the weak gravity conjecture favors an open universe and the decaying of matter into dark energy.  相似文献   

17.
The work deals with the thermodynamics of the universe bounded by the event horizon. The matter in the universe has three constituents namely dark energy, dark matter and radiation in nature and interaction between then is assumed. The variation of entropy of the surface of the horizon is obtained from unified first law while matter entropy variation is calculated from the Gibbss’ law. Finally, validity of the generalized second law of thermodynamics is examined and conclusions are written point wise.  相似文献   

18.
We have considered the generalized holographic and generalized Ricci dark energy models for acceleration of the universe. If the universe filled with only GHDE/GRDE the corresponding deceleration parameter, EOS parameter and statefinder parameters have been calculated. Next we have considered that the mixture of GHDE/GRDE and dark matter in interacting and non-interacting situations. Also the mixture of GHDE/GRDE and generalized Chaplygin gas have been analyzed during evolution of the universe. The natures of above mentioned parameters have been investigated for interacting and non-interacting situations. Finally, it follows that the prescribed models derive the acceleration of the universe.  相似文献   

19.
In this paper we study the validity of the generalised second law of thermodynamics (GSLT) of the universe bounded by the event horizon on the Dvali–Gabadadze–Porrati (DGP) brane world. The radius of the event horizon is calculated by establishing a correspondence between holographic dark energy and the effective energy density in the DGP brane world. It is shown that in the absence of cold dark matter (CDM), GSLT is always respected. In the presence of CDM, we take three different DGP models and find conditions under which GSLT holds.  相似文献   

20.
In this paper we consider holographic dark energy model with corrected holographic energy density and show that this model may be equivalent to the modified Chaplygin gas model. Then we obtain relation between entropy corrected holographic dark energy model and scalar field models. We do these works by using choices of IR cut-off length proportional to the Hubble radius, the event horizon radius, the Ricci length, and the Granda-Oliveros length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号