首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction of Sc3N@C80 with 6,7-dimethoxyisochroman-3-one (13C labeled) provides the first functionalized derivative of the trimetallic nitride template (TNT) endohedral metallofullerene family. The reaction mixture is dominated by a single 13C labeled monoadduct product that was purified by HPLC. The 13C labeled monoadduct was characterized by 1H NMR, 13C NMR, and MALDI-TOF mass spectrometry. The proposed structure for this novel symmetric monoadduct is consistent with derivatization at the [5,6] ring juncture on the Sc3N@C80 cage.  相似文献   

2.
The photochemical reaction of Sc(3)N@C(80) with 1,1,2,2-tetramesityl-1,2-disilirane affords the adduct as a bis-silylated product. The adduct was characterized by NMR spectroscopy and single-crystal X-ray structure analysis. The dynamic behavior of the disilirane moiety and the encapsulated Sc(3)N cluster were also investigated. The unique redox property of the adduct is reported by means of CV and DPV. Experimental results were confirmed by density functional calculations.  相似文献   

3.
The yield of Sc3N@C80 metallofullerene and fullerene extract is dramatically increased via filling cored graphite rods with copper and Sc2O3 only; when compared to 100% Sc2O3 packed rods, improvements of factors of approximately 3 and approximately 5 have been achieved for Sc3N@C80 and fullerene extract produced, respectively, with the weight percent of Cu added to the rod affecting the type and amount of fullerene produced.  相似文献   

4.
Reported herein are computations on the relative concentrations of the two experimentally known isomers of Sc3N@C80 , that is, those produced by encapsulation of Sc3N in two particular C80 cages that obey the isolated-pentagon rule, namely, with I(h) and D(5h) symmetries. The calculations are based on density functional methods and have been carried out using the Gibbs energy over a broad temperature interval. It has been computed that, if a relatively free motion of the encapsulate inside the cages is allowed, the observed populations of 10 and 17 % for the D(5h) Sc3N@C80 species are reached at temperatures of 2100 and 2450 K, respectively. The inclusion of the entropy term is essential as, if it is neglected, the D(5h) Sc3N@C80 population at a temperature of 2100 K would be a mere 1 %, owing to the relatively large interisomeric separation potential energy of 19 kcal mol(-1).  相似文献   

5.
On the basis of calculations using density functional theory, we investigated the relative stabilities of all isomers of Sc3N@C67B and Sc3N@C67N as well as those of stable isomers of Sc3N@C66BN. As a result, we predict that Sc3N@C68 can be doped substitutionally with a boron atom much better than C60. This effect can be ascribed to the favorable electrostatic attraction between the encased Sc3N cluster and the polar C-B bonds of the fullerene cage, which show the important role played by the encapsulated atoms in stabilizing the fullerene. A difference in the interaction also determines the regiospecificity of Sc3N@C67B. On the contrary, N-doping of the fullerenes forming Sc3N@C67N is much less favorable than that in C60 or C70. A judicious choice of stable isomers of Sc3N@C66BN among a vast number of possible isomers indicates that Sc3N@C68 can also be doped with a pair of B and N atoms better than C60 under the simultaneous existence of B and N sources. Relative stabilities of various isomers of the BN-substituted fullerenes can be understood in terms of the combined electrostatic effects in the B- and N-substitutions of Sc3N@C68 complemented by a specific local preference in the N-substitution and the formation of a B-N bond.  相似文献   

6.
Two electrochemical oxidation waves assigned to the D(5h) isomer of Sc(3)N@C(80) have been identified, and a 270-mV difference in the first electrochemical oxidation potentials of the I(h) and D(5h) isomers has been measured. On the basis of this oxidative potential difference, a strategy for isomeric purification involving a selective chemical oxidation of the D(5h) isomer is reported. Variable scan cyclic voltammetry of the resultingly pure Sc(3)N@C(80) I(h) isomer shows evidence of a rapid endohedral chemical reaction following the first reduction process.  相似文献   

7.
In this paper we report enhanced reactivity of the D(5h) isomers in comparison with the more common I(h) isomers of Sc(3)N@C(80) and Lu(3)N@C(80) toward Diels-Alder and 1,3-dipolar tritylazomethine ylide cycloaddition reactions. Also, the structure of the D(5h) isomer of Sc(3)N@C(80) has been determined through single-crystal X-ray diffraction on D(5h)-Sc(3)N@C(80).Ni(OEP).2benzene (OEP = octaethylporphyrin). The Sc(3)N portion of D(5h)-Sc(3)N@C(80) is strictly planar, but the plane of these four atoms is tipped out of the noncrystallographic, horizontal mirror plane of the fullerene by 30 degrees . The combination of short bond length and high degree of pyramidization for the central carbon atoms of the pyracylene sites situated along a belt that is perpendicular to the C(5) axis suggests that these are the sites of greatest reactivity in the D(5h) isomer of Sc(3)N@C(80). Consistent with the observation of higher reactivity observed for the D(5h) isomers, cyclic voltammetry and molecular orbital (MO) calculations demonstrate that the D(5h) isomers have slightly smaller energy gaps than those of the I(h) isomers. The first mono- and bis-adducts of D(5h) Sc(3)N@C(80) have been synthesized via 1,3-dipolar cycloaddition of tritylazomethine ylide. The NMR spectrum for the monoadduct 2b is consistent with reaction at the 6,6-ring juncture in the pyracylene unit of the D(5h) Sc(3)N@C(80) cage and is the thermodynamically stable isomer. On the other hand, monoadduct 2a undergoes thermal conversion to other isomeric monoadducts, and three possible structures are proposed.  相似文献   

8.
The unexpected isomerization of N-ethyl [6,6]-pyrrolidino-Y3N@C80 to the [5,6] regioisomer is reported, as well as the synthesis, characterization, and electrochemical analysis of Er3N@C80 derivatives. A complete electrochemical study of the M3N@C80 species (M = Sc, Y, Er) and their derivatives is presented. We introduce electrochemistry as a new tool in the characterization of the [5,6] and [6,6] regioisomers of trimetallic nitride endohedral metallofullerenes.  相似文献   

9.
Fullerene crystals or films have drawn much interest because they are good candidates for use in the construction of electronic devices. The results of theoretical calculations revealed that the conductivity properties of I(h)-C(80) endohedral metallofullerenes (EMFs) vary depending on the encapsulated metal species. We experimentally investigated the solid-state structures and charge-carrier mobilities of I(h)-C(80) EMFs La(2)@C(80), Sc(3)N@C(80), and Sc(3)C(2)@C(80). The thin film of Sc(3)C(2)@C(80) exhibits a high electron mobility μ = 0.13 cm(2) V(-1) s(-1) under normal temperature and atmospheric pressure, as determined using flash-photolysis time-resolved microwave conductivity measurements. This electron mobility is 2 orders of magnitude higher than the mobility of La(2)@C(80) or Sc(3)N@C(80).  相似文献   

10.
The structure of Sc3N@C80-C10H12O2, a Diels-Alder cycloadduct of Sc3N@C80, has been determined. The crystallographic data shows that cycloaddition occurs at a C-C bond of 6:5 ring junction, and that the fullerene C1-C2 bond is elongated and pulled out from the fullerene. The Sc3N unit is well-ordered within the C80 cage and positioned away from the site of addition. The proximity of the Sc atoms to the cage carbon atoms causes those carbon atoms to protrude slightly from the surface of the fullerene cage.  相似文献   

11.
Geometrical structures of three investigated molecules Sc3N@C80, Sc3N@C80‐Fc, and C60‐Fc were optimized by density functional theory (DFT) at the B3LYP/6‐31G* level. Then the time‐dependent DFT was employed to investigate the excited states of these molecules. After exohedral functionalization by ferrocene (Fc‐) group as the electron donor or replacing C60 with Sc3N@C80 as the electron acceptor, the wavelengths of the first one‐photon absorption peak and the strongest two‐photon absorption (2PA) and three‐photon absorption (3PA) peaks shift red. The corresponding cross sections of Sc3N@C80‐Fc in the 2PA and 3PA processes increase as compared with those of Sc3N@C80, which originate from the contributions of charge transfers from Fc‐ group to C80 cage and simultaneously the transfers from the C80 cage to the encapsulated Sc3N cluster. When compared with C60‐Fc, the 2PA and 3PA cross sections of Sc3N@C80‐Fc decrease, which may result from the more negative charge surface of C80 cage in Sc3N@C80‐Fc molecule which blocks the charge transfers from Fc‐ moiety to the C80 cage in the excitation processes by compared with C60‐Fc. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

12.
We report the synthesis of two cyclic β-pyrrole unsubstituted meso-tetraphenyl bisporphyrins in which the porphyrin units are connected by two 2,3-hexadiynyl-1,6-dioxo or two hexyl-1,6-dioxo spacers, respectively. Both cyclic porphyrin dimers exist in solution as mixtures of two conformational isomers. In the solid state, the receptor with diynyl spacers forms a 1:1 complex with the icosahedral (I(h)) isomer of the trimetallic nitride endohedral fullerene Sc(3)N@C(80). In this complex the receptor adopts a scoop-shaped conformation having a dihedral angle of 87.25° between the two porphyrin planes. The hexyl spaced analogue, however, adopts a similar conformation upon encapsulation of one molecule of Sc(3)N@C(80) in a self-assembled dimeric capsule. The capsular complexes pack in columns and render the fullerene units completely isolated. In toluene solution, (1)H NMR experiments indicate that the endohedral fullerene Sc(3)N@C(80) is exclusively bound by the expanded isomer of both dimers. UV-vis and fluorescence titration experiments confirmed the existence of strong π-π interactions between the fullerene Sc(3)N@C(80) and the flexible bisporphyrin dimer with hexyl spacers. At micromolar concentration, the flexible receptor forms only a 1:1 complex with the endohedral fullerene with stability constant value of K(a) = 2.6 ± 0.3 × 10(5) M(-1).  相似文献   

13.
14.
The pure I(h) isomer of Sc3N@C80 was allowed to react with N-triphenylmethyl-5-oxazolidinone via the corresponding azomethine ylide. The reaction results in the formation of two monoadducts; one (1b) is the kinetic product, and the other (1a) is thermodynamically more stable. Small amounts of the bisadducts were also formed. The structure of the thermodynamic monoadduct 1a was shown conclusively by NMR spectroscopy and X-ray crystallography to result from addition across the 5,6-ring junction. The kinetic product 1b was demonstrated to be the 6,6-ring juncture adduct on the basis of NMR experiments and X-ray crystallography. In refluxing chlorobenzene pure 1b was converted to the more thermodynamically stable 1a isomer. These N-tritylpyrrolidino derivatives are potentially useful precursor compounds for further derivatization for various applications.  相似文献   

15.
A correlation equation that links the relative chemical shift of the protons of the triazine ring with the F and R constants of the substituents was obtained on the basis of data from the PMR spectra of solutions of sym-triazine and its monosubstituted derivatives [OCH3, N(CH3)2, CH3, C6H5, COOC2H5, and CN] in dimethyl sulfoxide (DMSO). The equation was analyzed by comparison with the corresponding equations for monosubstituted benzenes and pyrimidines.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 410–414, March, 1982.  相似文献   

16.
17.
Sc(3)N@D(5h)-C(80) and Sc(3)N@I(h)-C(80) were trifluoromethylated with CF(3)I at 400 °C, affording mixtures of CF(3) derivatives. After separation with HPLC, the first multi-CF(3) derivative of Sc(3)N@D(5h)-C(80), Sc(3)N@D(5h)-C(80)(CF(3))(18), and three new isomers of Sc(3)N@I(h)-C(80)(CF(3))(14) were investigated by X-ray crystallography. The Sc(3)N@D(5h)-C(80)(CF(3))(18) molecule is characterized by a large number of double C-C bonds and benzenoid rings within the D(5h)-C(80) cage and a fully different position of the Sc(3)N unit compared to that in the pristine Sc(3)N@D(5h)-C(80). A detailed comparison of five Sc(3)N@I(h)-C(80)(CF(3))(14) isomers reveals a strong influence of the exohedral additions on the behavior of the Sc(3)N cluster inside the I(h)-C(80) cage.  相似文献   

18.
19.
The physical factors behind the reduced Diels–Alder reactivity of the Sc3N@C78 metallofullerene as compared with free C78 have been investigated in detail by means of computational tools. To this end, the reactions between 1,3‐butadiene and free C78 and endohedral Sc3N@C78 have been analysed in terms of regioselectivity and reactivity by using the activation strain model of reactivity in combination with the energy decomposition analysis method. Additional factors such as the molecular orbital overlap or the aromaticity of the corresponding transition states have been also explored. Our results indicate that the lower reactivity of the metallofullerene finds its origin mainly in the less stabilizing interaction between the deformed reactants along the reaction coordinate induced by the triscandium nitride moiety.  相似文献   

20.
Sc3N@C68 is assigned to isomer Sc3N@C68:6140 on the grounds of relative energies, geometrical data, and its 13C NMR pattern. Sc3N@C68:6140 is an endohedral fullerene where each Sc atom is coordinated to the center of an equatorial pentalene unit. Static and dynamic computer simulations explain the different point groups observed in NMR and X-ray experiments. Computed and experimental 13C NMR pattern are in close agreement except for one low-intensity signal. The competing isomer Sc3N@C68:6275 is found to be 409 kJ/mol less stable and shows a different 13C NMR pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号